版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省哈爾濱市示范名校2023年高一上數(shù)學(xué)期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.設(shè)則()A. B.C. D.2.已知兩條繩子提起一個物體處于平衡狀態(tài).若這兩條繩子互相垂直,其中一條繩子的拉力為50,且與兩繩拉力的合力的夾角為30°,則另一條繩子的拉力為()A.100 B.C.50 D.3.集合,,則()A. B.C. D.4.“”是“冪函數(shù)在上單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知命題p:?n∈N,2n>2021.那么A.?n∈N,2n≤2021 B.?n∈NC.?n∈N,2n≤2021 D.?n∈N6.下列關(guān)系中,正確的是()A. B.C D.7.函數(shù)在上最大值與最小值之和是()A. B.C. D.8.某學(xué)生離家去學(xué)校,由于怕遲到,一開始就跑步,等跑累了再步行走完余下的路程,若以縱軸表示離家的距離,橫軸表示離家后的時間,則下列四個圖形中,符合該學(xué)生走法的是()A. B.C. D.9.已知,則的最大值為()A. B.C.0 D.210.函數(shù)的大致圖象是A. B.C. D.11.垂直于直線且與圓相切的直線的方程是AB.C.D.12.在中,,則的值為A. B.C. D.2二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.函數(shù)f(x)=cos的圖象向右平移個單位長度,得到函數(shù)的圖象,則函數(shù)的解析式為_______,函數(shù)的值域是________14.已知,則___________.(用含a的代數(shù)式表示)15.使三角式成立的的取值范圍為_________16.函數(shù)的單調(diào)增區(qū)間是______三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知二次函數(shù)滿足條件和,(1)求;(2)求在區(qū)間()上的最小值18.已知函數(shù)為奇函數(shù)(1)求的值;(2)當(dāng)時,關(guān)于的方程有零點,求實數(shù)的取值范圍19.為適應(yīng)新冠肺炎疫情長期存在的新形勢,打好疫情防控的主動仗,某學(xué)校大力普及科學(xué)防疫知識,現(xiàn)需要在2名女生、3名男生中任選2人擔(dān)任防疫宣講主持人,每位同學(xué)當(dāng)選的機會是相同的.(1)寫出試驗的樣本空間,并求當(dāng)選的2名同學(xué)中恰有1名女生的概率;(2)求當(dāng)選的2名同學(xué)中至少有1名男生的概率.20.如圖是函數(shù)的部分圖像,是它與軸的兩個不同交點,是之間的最高點且橫坐標(biāo)為,點是線段的中點.(1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;(2)若時,函數(shù)的最小值為,求實數(shù)的值.21.已知圓的標(biāo)準(zhǔn)方程為,圓心為,直線的方程為,點在直線上,過點作圓的切線,,切點分別為,(1)若,試求點的坐標(biāo);(2)若點的坐標(biāo)為,過作直線與圓交于兩點,當(dāng)時,求直線的方程;(3)求證:經(jīng)過,,三點的圓必過定點,并求出所有定點的坐標(biāo)22.已知,,且,,求的值
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】利用中間量隔開三個值即可.【詳解】∵,∴,又,∴,故選:A【點睛】本題考查實數(shù)大小的比較,考查指對函數(shù)的性質(zhì),屬于??碱}型.2、D【解析】利用向量的平行四邊形法則求解即可【詳解】如圖,兩條繩子提起一個物體處于平衡狀態(tài),不妨設(shè),根據(jù)向量的平行四邊形法則,故選:D3、B【解析】解不等式可求得集合,由交集定義可得結(jié)果.【詳解】,,.故選:B.4、A【解析】由冪函數(shù)的概念,即可求出或,再根據(jù)或均滿足在上單調(diào)遞增以及充分條件、必要條件的概念,即可得到結(jié)果.【詳解】若為冪函數(shù),則,解得或,又或都滿足在上單調(diào)遞增故“”是“冪函數(shù)在上單調(diào)遞增”的充分不必要條件故選:A.5、A【解析】根據(jù)含有一個量詞命題否定的定義,即可得答案.【詳解】命題p:?n∈N,2n>2021的否定?p為:?n∈N,故選:A6、B【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調(diào)遞減,因為,所以,又,,因為在上單調(diào)遞增,所以,所以,所以,故B正確;對于C:因為在上單調(diào)遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調(diào)遞減,又,所以,又,所以,故D錯誤;故選:B7、A【解析】直接利用的范圍求得函數(shù)的最值,即可求解.【詳解】∵,∴,∴,∴最大值與最小值之和為,故選:.8、A【解析】縱軸表示離家的距離,所以在出發(fā)時間為可知C,D錯誤,再由剛開始時速度較快,后面速度較慢,可根據(jù)直線的傾斜程度得到答案.【詳解】當(dāng)時間時,,故排除C,D;由于剛開始時速度較快,后面速度較慢,所以前段時間的直線的傾斜角更大.故選:A.【點睛】本題考查根據(jù)實際問題抽象出對應(yīng)問題的函數(shù)圖象,考查抽象概括能力,屬于容易題.9、C【解析】把所求代數(shù)式變形,轉(zhuǎn)化成,再對其中部分以基本不等式求最值即可解決.【詳解】時,(當(dāng)且僅當(dāng)時等號成立)則,即的最大值為0.故選:C10、D【解析】關(guān)于對稱,且時,,故選D11、B【解析】設(shè)所求直線方程為3x+y+c=0,則d=,解得d=±10.所以所求直線方程為3x+y+10=0或3x+y-10=0.12、C【解析】直接利用三角函數(shù)關(guān)系式的恒等變換和特殊角的三角函數(shù)的值求出結(jié)果【詳解】在中,,則,,,,故選C【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換和特殊角三角函數(shù)的值的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、①.②.【解析】由題意利用函數(shù)的圖象變換規(guī)律求得的解析式,可得的解析式,再根據(jù)余弦函數(shù)的值域,二次函數(shù)的性質(zhì),求得的值域【詳解】函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,函數(shù),,故當(dāng)時,取得最大值為;當(dāng)時,取得最小值為,故的值域為,,故答案為:;,14、【解析】利用換底公式化簡,根據(jù)對數(shù)的運算法則求解即可【詳解】因為,所以故答案為:.15、【解析】根據(jù)同角三角函數(shù)間的基本關(guān)系,化為正余弦函數(shù),即可求出.【詳解】因為,,所以,所以,所以終邊在第三象限,.【點睛】本題主要考查了同角三角函數(shù)間的基本關(guān)系,三角函數(shù)在各象限的符號,屬于中檔題.16、【解析】先求出函數(shù)定義域,再換元,利用復(fù)合函數(shù)單調(diào)性的求法求解【詳解】由,得,所以函數(shù)的定義域為,令,則,因為在上遞增,在上遞減,而在上為增函數(shù),所以在上遞增,在上遞減,故答案為:三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2).【解析】(1)由二次函數(shù)可設(shè),再利用進行化簡分析即可.(2)由(1)可知,對稱軸為,通過討論的范圍,根據(jù)函數(shù)的單調(diào)性,求出函數(shù)的最小值.【詳解】(1)由二次函數(shù)可設(shè),因為,故,即,即,故,即,故;(2)函數(shù)的對稱軸為,則當(dāng),即時,在單調(diào)遞減,;當(dāng),即時,;當(dāng)時,在單調(diào)遞增,,.【點睛】本題主要考查二次函數(shù)的解析式求解以及二次函數(shù)最值的問題等,屬于中等題型.18、(1)(2)【解析】(1)利用函數(shù)為奇函數(shù)所以即得的值(2)方程有零點,轉(zhuǎn)化為求的值域即可得解.試題解析:(1)∵,∴,∴(2)∵,∴,∵,∴,∴,∴19、(1)樣本空間答案見解析,概率是(2)【解析】(1)將2名女生,3名男生分別用a,b;c,d,e表示,即可列出樣本空間,再根據(jù)古典概型的概率公式計算可得;(2)設(shè)事件“當(dāng)選的2名同學(xué)中至少有1名男生”,事件“當(dāng)選的2名同學(xué)中全部都是女生”,事件B,C為對立事件,利用古典概型的概率公式求出,最后根據(jù)對立事件的概率公式計算可得;【小問1詳解】解:將2名女生,3名男生分別用a,b;c,d,e表示,則從5名同學(xué)中任選2名同學(xué)試驗的樣本空間為,共有10個樣本點,設(shè)事件“當(dāng)選的2名同學(xué)中恰有1名女生”,則,樣本點有6個,∴.即當(dāng)選的2名同學(xué)中恰有1名女生的概率是【小問2詳解】解:設(shè)事件“當(dāng)選的2名同學(xué)中至少有1名男生”,事件“當(dāng)選的2名同學(xué)中全部都是女生”,事件B,C為對立事件,因為,∴,∴.即當(dāng)達的2名同學(xué)中至少有1名男生的概率是.20、(1)(2)【解析】(1)由點是線段的中點,可得和的坐標(biāo),從而得最值和周期,可得和,再代入頂點坐標(biāo)可得,再利用整體換元可求單調(diào)區(qū)間;(2)令得到,討論二次函數(shù)的對稱軸與區(qū)間的位置關(guān)系求最值即可.【詳解】(1)因為為中點,,所以,,則,,又因為,則所以,由又因為,則所以令又因為則單調(diào)遞增區(qū)間為.(2)因為所以令,則對稱軸為①當(dāng)時,即時,;②當(dāng)時,即時,(舍)③當(dāng)時,即時,(舍)綜上可得:.【點睛】本題主要考查了利用三角函數(shù)的圖象求解三角函數(shù)的解析式及二次函數(shù)軸動區(qū)間定的最值問題,考查了學(xué)生的分類討論思想及計算能力,屬于中檔題.21、(1)或;(2)或;(3)詳見解析【解析】(1)點在直線上,設(shè),由對稱性可知,可得,從而可得點坐標(biāo).(2)分析可知直線的斜率一定存在,設(shè)其方程為:.由已知分析可得圓心到直線的距離為,由點到線的距離公式可求得的值.(3)由題意知,即.所以過三點的圓必以為直徑.設(shè),從而可得圓的方程,根據(jù)的任意性可求得此圓所過定點試題解析:解:(1)直線的方程為,點在直線上,設(shè),由題可知,所以,解之得:故所求點的坐標(biāo)為或(2)易知直線的斜率一定存在,設(shè)其方程為:,由題知圓心到直線的距離為,所以,解得,或,故所求直線的方程為:或(3)設(shè),則的中點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東司法警官職業(yè)學(xué)院《文學(xué)概論I》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東省外語藝術(shù)職業(yè)學(xué)院《交通安全工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東輕工職業(yè)技術(shù)學(xué)院《綠色建筑與可持續(xù)建設(shè)英文》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東女子職業(yè)技術(shù)學(xué)院《影視欄目包裝》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名健康職業(yè)學(xué)院《土地利用工程制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東理工職業(yè)學(xué)院《畫法幾何與工程制圖一》2023-2024學(xué)年第一學(xué)期期末試卷
- 四年級數(shù)學(xué)(四則混合運算)計算題專項練習(xí)與答案匯編
- 【原創(chuàng)】江蘇省2013-2020學(xué)年高一年級第二學(xué)期英語知識競賽試題
- 【2020年各地名校模擬地理分類匯編】(高三、2020.4-7月份)C單元-地球上的大氣
- 【導(dǎo)學(xué)教程】2022屆高三生物一輪總復(fù)習(xí)限時訓(xùn)練:第七單元第一講生物的變異-
- 科技水晶質(zhì)感產(chǎn)品推廣PPT模板
- 化工儀表及自動化第六版-課后-答案
- 老化箱點檢表A3版本
- 消防設(shè)施驗收移交單
- 光伏發(fā)電項目并網(wǎng)調(diào)試方案
- 教師教學(xué)質(zhì)量評估表(學(xué)生用)
- 高中化學(xué)競賽題--成鍵理論
- 康復(fù)中心組織結(jié)構(gòu)圖
- 2022年自考4月英語真題帶解析
- 京東價值鏈分析PPT課件
- 客情關(guān)系的建立與維護
評論
0/150
提交評論