版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
培優(yōu)資料——二次函數(shù)中的存在性問題(等腰三角形和直角三角形)班級(jí)______________姓名_______例1如圖,拋物線經(jīng)過的三個(gè)頂點(diǎn),已知軸,點(diǎn)在軸上,點(diǎn)在軸上,且.(1)求拋物線的對(duì)稱軸;(2)寫出三點(diǎn)的坐標(biāo)并求拋物線的解析式;(3)探究:若點(diǎn)是拋物線對(duì)稱軸上且在軸下方的動(dòng)點(diǎn),是否存在是等腰三角形.若存在,求出所有符合條件的點(diǎn)坐標(biāo);不存在,請(qǐng)說明理由.AACByx011解:(1)拋物線的對(duì)稱軸;
(2),,
把點(diǎn)A坐標(biāo)代入中,解得
∴。(3)存在符合條件的點(diǎn)P共有3個(gè),以下分三類情形探索
設(shè)拋物線對(duì)稱軸與x軸交于N,與CB交于M
過點(diǎn)B作軸于Q,易得,,,
①以AB為腰且頂角為角A的有1個(gè):
∴
在中,
∴。
②以AB為腰且頂角為角B的有1個(gè):
在中,
∴。
③以AB為底,頂角為角P的有1個(gè),即
畫的垂直平分線交拋物線對(duì)稱軸于,此時(shí)平分線必過等腰的頂點(diǎn)C
過點(diǎn)作垂直y軸,垂足為K,顯然
∴
∵
∴
于是
∴。例2如圖,已知拋物線的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與x軸交于點(diǎn)D.點(diǎn)M從O點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度向B運(yùn)動(dòng),過M作x軸的垂線,交拋物線于點(diǎn)P,交BC于Q.(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);(2)設(shè)當(dāng)點(diǎn)M運(yùn)動(dòng)了x(秒)時(shí),四邊形OBPC的面積為S,求S與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)在線段BC上是否存在點(diǎn)Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由.解:(1)把x=0代入得點(diǎn)C的坐標(biāo)為C(0,2),
把y=0代入得點(diǎn)B的坐標(biāo)為B(3,0);
(2)連結(jié)OP,設(shè)點(diǎn)P的坐標(biāo)為P(x,y),
=+
=
=
=
∵點(diǎn)M運(yùn)動(dòng)到B點(diǎn)上停止,
∴
∴;
(3)存在,
BC=
①若BQ=DQ
∵BQ=DQ,BD=2
∴BM=1
∴OM=3-1=2,
∴
∴QM=,
所以Q的坐標(biāo)為Q(2,),
②若BQ=BD=2
∵△BQM∽△BCO,
∴
∴
∴QM=,
∵,
∴,
∴BM=,
∴OM=,
所以Q的坐標(biāo)為Q(,)。例3如圖,點(diǎn)A在x軸上,OA=4,將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°至OB的位置.(1)求點(diǎn)B的坐標(biāo);(2)求經(jīng)過點(diǎn)A.O、B的拋物線的解析式;(3)在此拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使得以點(diǎn)P、O、B為頂點(diǎn)的三角形是等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.解:(1)如圖,過B點(diǎn)作BC⊥x軸,垂足為C,則∠BCO=90°。
∵∠AOB=120°,∴∠BOC=60°。
又∵OA=OB=4,
∴OC=OB=×4=2,BC=OB?sin60°=。
∴點(diǎn)B的坐標(biāo)為(﹣2,﹣)。
(2)∵拋物線過原點(diǎn)O和點(diǎn)A.B,
∴可設(shè)拋物線解析式為y=ax2+bx,將A(4,0),B(﹣2,﹣)代入,
得,解得。
∴此拋物線的解析式為。
(3)存在。
如圖,拋物線的對(duì)稱軸是x=2,直線x=2與x軸的交點(diǎn)為D,
設(shè)點(diǎn)P的坐標(biāo)為(2,y)。
①若OB=OP,則22+|y|2=42,解得y=±,
當(dāng)y=時(shí),
在Rt△POD中,∠PDO=90°,sin∠POD=,
∴∠POD=60°
∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三點(diǎn)在同一直線上。
∴y=不符合題意,舍去。
∴點(diǎn)P的坐標(biāo)為(2,﹣)。
②若OB=PB,則42+|y+|2=42,解得y=﹣。
∴點(diǎn)P的坐標(biāo)為(2,﹣)。
③若OP=BP,則22+|y|2=42+|y+|2,解得y=﹣。
∴點(diǎn)P的坐標(biāo)為(2,﹣)。
綜上所述,符合條件的點(diǎn)P只有一個(gè),其坐標(biāo)為(2,﹣)。(1)首先根據(jù)OA的旋轉(zhuǎn)條件確定B點(diǎn)位置,然后過B做x軸的垂線,通過構(gòu)建直角三角形和OB的長(即OA長)確定B點(diǎn)的坐標(biāo)。
(2)已知O、A、B三點(diǎn)坐標(biāo),利用待定系數(shù)法求出拋物線的解析式。
(3)根據(jù)(2)的拋物線解析式,可得到拋物線的對(duì)稱軸,然后先設(shè)出P點(diǎn)的坐標(biāo),而O、B坐標(biāo)已知,可先表示出△OPB三邊的邊長表達(dá)式,然后分①OP=OB、②OP=BP、③OB=BP三種情況分類討論,然后分辨是否存在符合條件的P點(diǎn)。例4如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過三點(diǎn).(1)求過三點(diǎn)拋物線的解析式并求出頂點(diǎn)的坐標(biāo);(2)在拋物線上是否存在點(diǎn),使為直角三角形,若存在,直接寫出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;(3)試探究在直線上是否存在一點(diǎn),使得的周長最小,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.AAOxyBFC圖4解:(1)拋物線的解析式為,頂點(diǎn)
(2)存在
,
(3)存在
理由:延長到點(diǎn),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版木材采購合同與木材質(zhì)量保證協(xié)議4篇
- 2025八年級(jí)上學(xué)期期末歷史試卷
- 2025年度二零二五年度智能交通管理系統(tǒng)設(shè)計(jì)與實(shí)施合同4篇
- 二零二五年度木制品表面處理合同樣本4篇
- 2025版學(xué)校教室租賃合同示范文本2篇
- 2025年度個(gè)人毛坯房租賃與租金支付方式合同4篇
- 公共基礎(chǔ)-2020年試驗(yàn)檢驗(yàn)師助理《公共基礎(chǔ)》真題
- 寶石礦物學(xué)在寶石加工中的應(yīng)用研究考核試卷
- 2025版土地居間業(yè)務(wù)規(guī)范合同樣本(2025版)6篇
- 2025版圖書銷售代理居間服務(wù)合同模板
- 加強(qiáng)教師隊(duì)伍建設(shè)教師領(lǐng)域?qū)W習(xí)二十屆三中全會(huì)精神專題課
- 2024-2025學(xué)年人教版數(shù)學(xué)七年級(jí)上冊(cè)期末復(fù)習(xí)卷(含答案)
- 2024年決戰(zhàn)行測5000題言語理解與表達(dá)(培優(yōu)b卷)
- 四年級(jí)數(shù)學(xué)上冊(cè)人教版24秋《小學(xué)學(xué)霸單元期末標(biāo)準(zhǔn)卷》考前專項(xiàng)沖刺訓(xùn)練
- 2025年慢性阻塞性肺疾病全球創(chuàng)議GOLD指南修訂解讀課件
- (完整版)減數(shù)分裂課件
- 銀行辦公大樓物業(yè)服務(wù)投標(biāo)方案投標(biāo)文件(技術(shù)方案)
- 第01講 直線的方程(九大題型)(練習(xí))
- 飯店管理基礎(chǔ)知識(shí)(第三版)中職PPT完整全套教學(xué)課件
- 2023年重慶市中考物理A卷試卷【含答案】
- 【打印版】意大利斜體英文字帖(2022年-2023年)
評(píng)論
0/150
提交評(píng)論