版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市榆樹市第一高級中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.甲、乙兩位同學(xué)解答一道題:“已知,,求的值.”甲同學(xué)解答過程如下:解:由,得.因為,所以.所以.乙同學(xué)解答過程如下:解:因為,所以.則在上述兩種解答過程中()A.甲同學(xué)解答正確,乙同學(xué)解答不正確 B.乙同學(xué)解答正確,甲同學(xué)解答不正確C.甲、乙兩同學(xué)解答都正確 D.甲、乙兩同學(xué)解答都不正確2.已知,且在區(qū)間有最大值,無最小值,則=()A B.C. D.3.下列四個函數(shù)中,在上為增函數(shù)的是()A. B.C. D.4.函數(shù)A.是奇函數(shù)且在區(qū)間上單調(diào)遞增B.是奇函數(shù)且在區(qū)間上單調(diào)遞減C.是偶函數(shù)且在區(qū)間上單調(diào)遞增D.是偶函數(shù)且在區(qū)間上單調(diào)遞減5.函數(shù)在單調(diào)遞增,且為奇函數(shù),若,則滿足的的取值范圍是A. B.C. D.6.一個多面體的三視圖分別為正方形、等腰三角形和矩形,如圖所示,則該多面體的體積為A.24cm3 B.48cm3C.32cm3 D.96cm37.已知冪函數(shù)在上單調(diào)遞減,則m的值為()A.0 B.1C.0或1 D.8.平行四邊形中,,,,點滿足,則A.1 B.C.4 D.9.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過x的最大整數(shù),則稱為高斯函數(shù)例如:,,已知函數(shù),則函數(shù)的值域為()A. B.C.1, D.1,2,10.若函數(shù)取最小值時,則()A. B.C. D.11.在空間直角坐標(biāo)系中,點在軸上,且點到點與點的距離相等,則點坐標(biāo)為()A. B.C. D.12.已知,則()A. B.7C. D.1二、填空題(本大題共4小題,共20分)13.已知點在直線上,則的最小值為______14.已知向量,其中,若,則的值為_________.15.已知直線過兩直線和的交點,且原點到該直線的距離為,則該直線的方程為_____.16.函數(shù)的單調(diào)遞減區(qū)間為_______________.三、解答題(本大題共6小題,共70分)17.已知函數(shù)(1)判斷的奇偶性,并加以證明;(2)求函數(shù)的值域18.已知直線(1)求直線的斜率;(2)若直線m與平行,且過點,求m方程.19.已知函數(shù)為奇函數(shù),且圖象的相鄰兩對稱軸間的距離為.(1)求的解析式與單調(diào)遞減區(qū)間;(2)已知在時,求方程的所有根的和.20.已知函數(shù),(且.)(1)求的定義域,并判斷函數(shù)的奇偶性;(2)設(shè),對于,恒成立,求實數(shù)m的取值范圍21.已知集合,(1)若,求實數(shù)a,b滿足的條件;(2)若,求實數(shù)m的取值范圍22.已知函數(shù)(1)求的值域;(2)討論函數(shù)零點的個數(shù).
參考答案一、選擇題(本大題共12小題,共60分)1、D【解析】分別利用甲乙兩位同學(xué)的解題方法解題,從而可得出答案.【詳解】解:對于甲同學(xué),由,得,因為因為,所以,所以,故甲同學(xué)解答過程錯誤;對于乙同學(xué),因為,所以,故乙同學(xué)解答過程錯誤.故選:D.2、C【解析】結(jié)合題中所給函數(shù)的解析式可得:直線為的一條對稱軸,∴,∴,又,∴當(dāng)k=1時,.本題選擇C選項.3、C【解析】A.利用一次函數(shù)的性質(zhì)判斷;B.利用二次函數(shù)的性質(zhì)判斷;C.利用反比例函數(shù)的性質(zhì)判斷;D.由,利用一次函數(shù)的性質(zhì)判斷;【詳解】A.由一次函數(shù)的性質(zhì)知:在上為減函數(shù),故錯誤;B.由二次函數(shù)的性質(zhì)知:在遞減,在上遞增,故錯誤;C.由反比例函數(shù)的性質(zhì)知:在上遞增,在遞增,則在上為增函數(shù),故正確;D.由知:函數(shù)在上為減函數(shù),故錯誤;故選:C【點睛】本題主要考查一次函數(shù),二次函數(shù)和反比例函數(shù)的單調(diào)性,屬于基礎(chǔ)題.4、A【解析】由可知是奇函數(shù),排除,,且,由可知錯誤,故選5、D【解析】是奇函數(shù),故;又是增函數(shù),,即則有,解得,故選D.【點睛】解本題的關(guān)鍵是利用轉(zhuǎn)化化歸思想,結(jié)合奇函數(shù)的性質(zhì)將問題轉(zhuǎn)化為,再利用單調(diào)性繼續(xù)轉(zhuǎn)化為,從而求得正解.6、B【解析】由三視圖可知該幾何體是一個橫放的直三棱柱,利用所給的數(shù)據(jù)和直三棱柱的體積公式即可求得體積.【詳解】由三視圖可知該幾何體是一個橫放的直三棱柱,底面為等腰三角形,底邊長為,底面三角形高為,所以其體積為:.故選:B【點睛】本題考查三視圖及幾何體體積計算,認(rèn)識幾何體的幾何特征是解題的關(guān)鍵,屬于基礎(chǔ)題.7、A【解析】根據(jù)冪函數(shù)得的定義,求得或,結(jié)合冪函數(shù)的性質(zhì),即可求解.【詳解】由題意,冪函數(shù),可得,解得或,當(dāng)時,可得,可得在上單調(diào)遞減,符合題意;當(dāng)時,可得,可得在上無單調(diào)性,不符合題意,綜上可得,實數(shù)的值為.故選:A.8、B【解析】選取,為基向量,將,用基向量表示后,再利用平面向量數(shù)量積的運算法則求解數(shù)量積.【詳解】,,,故選B【點睛】本題考查了平面向量的運算法則以及向量數(shù)量積的性質(zhì)及其運算,屬中檔題.向量的運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).9、C【解析】由分式函數(shù)值域的求法得:,又,所以,由高斯函數(shù)定義的理解得:函數(shù)的值域為,得解【詳解】解:因為,所以,又,所以,由高斯函數(shù)的定義可得:函數(shù)的值域為,故選C【點睛】本題考查了分式函數(shù)值域的求法及對新定義的理解,屬中檔題10、B【解析】利用輔助角公式化簡整理,得到輔助角與的關(guān)系,利用三角函數(shù)的圖像和性質(zhì)分析函數(shù)的最值,計算正弦值即可.【詳解】,其中,因為當(dāng)時取得最小值,所以,故.故選:B.11、B【解析】先由題意設(shè)點的坐標(biāo)為,根據(jù)空間中的兩點間距離公式,列出等式,求出,即可得出結(jié)果.【詳解】因為點在軸上,所以可設(shè)點的坐標(biāo)為,依題意,得,解得,則點的坐標(biāo)為故選:B.12、A【解析】利用表示,代入求值.【詳解】,即,.故選:A二、填空題(本大題共4小題,共20分)13、2【解析】由點在直線上得上,且表示點與原點的距離∴的最小值為原點到直線的距離,即∴的最小值為2故答案為2點睛:本題考查了數(shù)學(xué)的化歸與轉(zhuǎn)換能力,首先要知道一些式子的幾何意義,比如本題表示點和原點的兩點間距離,所以本題轉(zhuǎn)化為已知直線上的點到定點的距離的最小值,即定點到直線的距離最小.14、4【解析】利用向量共線定理即可得出【詳解】∵∥,∴=8,解得,其中,故答案為【點睛】本題考查了向量共線定理,考查了向量的坐標(biāo)運算,屬于基礎(chǔ)題15、或【解析】先求兩直線和的交點,再分類討論,先分析所求直線斜率不存在時是否符合題意,再分析直線斜率存在時,設(shè)斜率為,再由原點到該直線的距離為,求出,得到答案.【詳解】由和,得,即交點坐標(biāo)為,(1)當(dāng)所求直線斜率不存在時,直線方程為,此時原點到直線的距離為,符合題意;(2)當(dāng)所求直線斜率存在時,設(shè)過該點的直線方程為,化為一般式得,由原點到直線的距離為,則,解得,得所求直線的方程為.綜上可得,所求直線的方程為或故答案為:或【點睛】本題考查了求兩直線的交點坐標(biāo),由點到直線的距離求參,還考查了對直線的斜率是否存在分類討論的思想,屬于中檔題.三、16、【解析】由題得,利用正切函數(shù)的單調(diào)區(qū)間列出不等式,解之即得.【詳解】由題意可知,則要求函數(shù)的單調(diào)遞減區(qū)間只需求的單調(diào)遞增區(qū)間,由得,所以函數(shù)的單調(diào)遞減區(qū)間為.故答案為:.三、解答題(本大題共6小題,共70分)17、(1)是奇函數(shù);證明見解析(2)【解析】(1)首先確定定義域,根據(jù)奇偶性定義可得結(jié)論;(2)令,可求得的范圍,進而可得的值域.【小問1詳解】由得:,定義域為,關(guān)于原點對稱;,,為奇函數(shù);【小問2詳解】令,且,,或,或,的值域為.18、(1);(2).【解析】(1)將直線變形為斜截式即可得斜率;(2)由平行可得斜率,再由點斜式可得結(jié)果.【詳解】(1)由,可得,所以斜率為;(2)由直線m與平行,且過點,可得m的方程為,整理得:.19、(1),,(2)【解析】(1)將函數(shù)變形為,由函數(shù)的周期及奇偶性可求解;(2)解方程得或,即或,利用正弦函數(shù)的性質(zhì)可求解.【小問1詳解】圖象的相鄰兩對稱軸間的距離為,的最小正周期為,即可得,又為奇函數(shù),則,,又,,故的解析式為,令,得函數(shù)的遞減區(qū)間為,.【小問2詳解】,,,方程可化為,解得或,即或當(dāng)時,或或解得或或當(dāng)時,,所以綜上知,在時,方程的所有根的和為20、(1)定義域為;為奇函數(shù);(2)【解析】(1)由函數(shù)的定義域滿足,可得其定義域,由可判斷其奇偶性.(2)先由對數(shù)型函數(shù)的定義域可得,當(dāng)時,由對數(shù)函數(shù)的單調(diào)性可得在上恒成立,即在上恒成立,即可得出答案.【詳解】(1)由題意,函數(shù),由,可得或,即定義域為;由,即有,可得為奇函數(shù);(2)對于,恒成立,由,則,又,則由,即在上恒成立.由,即在上恒成立.由,可得時,y取得最小值8,則,因此可得,時,的取值范圍是:【點睛】關(guān)鍵點睛:本題考查對數(shù)型函數(shù)的定義域和奇偶性的判斷,不等式恒成立求參數(shù)問題,解答本題的關(guān)鍵是由對數(shù)型函數(shù)的定義域則滿足,可得,然后將問題化為由,即在上恒成立,屬于中檔題.21、(1),;(2).【解析】(1)直接利用并集結(jié)果可得,;(2)根據(jù)可得,再對集合的解集情況進行分類討論,即可得答案;【詳解】解:(1);,∴,;(2),∴分情況討論①,即時得;②若,即,中只有一個元素1符合題意;③若,即時得,∴∴綜上【點睛】由集合間的基本關(guān)系求參數(shù)時,注意對可變的集合,分空集和不為空集兩種情況.22、(1);(2)答案見解析.【解析】(1)分和,分別求出對應(yīng)函數(shù)的值域,進而可求出結(jié)果;(2)作出函數(shù)的圖象,數(shù)形結(jié)合即可分析出結(jié)果.【小問1詳解】當(dāng)時,,對稱軸為,開口向上,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即值域為;當(dāng)時,,則在上單調(diào)遞減,且,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版電力工程項目居間代理傭金服務(wù)合同2篇
- 二零二五版電子商業(yè)買賣合同模板3篇
- 二零二五年度工地鋼管外架施工環(huán)保設(shè)施設(shè)計與安裝承包合同3篇
- 白葉2025版離婚協(xié)議中共同財產(chǎn)分割及子女撫養(yǎng)費用支付合同二零二五年度3篇
- 二零二五版30天退換租免傭租賃服務(wù)合同2篇
- 二零二五年生活垃圾收運一體化服務(wù)合同2篇
- 二零二五年度神東派遣工權(quán)益同工同酬合同3篇
- 2025年度彩鋼圍擋施工及租賃一體化合同3篇
- 二零二五年度食品安全風(fēng)險評估模型構(gòu)建合同3篇
- 二零二五年度鋼筋產(chǎn)品研發(fā)與技術(shù)轉(zhuǎn)移合同3篇
- 優(yōu)秀支行行長推薦材料
- 公司設(shè)備轉(zhuǎn)讓合同協(xié)議書
- 2023年全國統(tǒng)一建筑工程預(yù)算工程量計算規(guī)則完整版
- 教科版四年級科學(xué)下冊第三單元巖石與土壤4.制作巖石和礦物標(biāo)本(教學(xué)設(shè)計)教案
- 大學(xué)《工程力學(xué)》期末考試試題庫含詳細(xì)答案
- 2022年湖北省武漢市中考數(shù)學(xué)試卷含解析
- TLFSA 003-2020 危害分析與關(guān)鍵控制點(HACCP)體系調(diào)味面制品生產(chǎn)企業(yè)要求
- LY/T 2244.3-2014自然保護區(qū)保護成效評估技術(shù)導(dǎo)則第3部分:景觀保護
- 紀(jì)律教育月批評與自我批評五篇
- GB/T 26480-2011閥門的檢驗和試驗
- GB/T 13342-2007船用往復(fù)式液壓缸通用技術(shù)條件
評論
0/150
提交評論