版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市周南梅溪湖中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.把正方形沿對角線折起,當(dāng)以,,,四點為頂點的三棱錐體積最大時,直線和平面所成角的大小為()A. B.C. D.2.已知,則的大小關(guān)系為()A. B.C. D.3.已知函數(shù),若關(guān)于的方程有四個不同的實數(shù)解,且,則的取值范圍是()A. B.C. D.4.下列函數(shù)中,在其定義域內(nèi)既是增函數(shù)又是奇函數(shù)的是()A. B.C. D.5.已知,且,則下列不等式恒成立的是()A. B.C. D.6.函數(shù)y=的單調(diào)遞減區(qū)間是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)7.已知函數(shù)是定義域為奇函數(shù),當(dāng)時,,則不等式的解集為A. B.C. D.8.直線l通過兩直線7x+5y-24=0和x-y=0的交點,且點(5,1)到直線l的距離為,則直線l的方程是()A.3x+y+4=0 B.3x-y+4=0C.3x-y-4=0 D.x-3y-4=09.直線l:x﹣2y+k=0(k∈R)過點(0,2),則k的值為()A.﹣4 B.4C.2 D.﹣210.已知全集,集合,,那么陰影部分表示的集合為A. B.C. D.11.,,,則的大小關(guān)系為()A. B.C. D.12.設(shè)向量,,,則A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.設(shè),,依次是方程,,的根,并且,則,,的大小關(guān)系是___14.函數(shù)定義域為________.(用區(qū)間表示)15.給出下列四種說法:(1)函數(shù)與函數(shù)的定義域相同;(2)函數(shù)與的值域相同;(3)若函數(shù)式定義在R上的偶函數(shù)且在為減函數(shù)對于銳角則;(4)若函數(shù)且,則;其中正確說法序號是________.16.已知函數(shù)同時滿足以下條件:①定義域為;②值域為;③.試寫出一個函數(shù)解析式___________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.6月17日是聯(lián)合國確定的“世界防治荒漠化和干旱日”,旨在進一步提高世界各國人民對防治荒漠化重要性的認(rèn)識,喚起人們防治荒漠化的責(zé)任心和緊迫感.為增強全社會對防治荒漠化的認(rèn)識與關(guān)注,聚集聯(lián)合國2030可持續(xù)發(fā)展目標(biāo)——實現(xiàn)全球土地退化零增長.自2004年以來,我國荒漠化和沙化狀況呈現(xiàn)整體遏制、持續(xù)縮減、功能增強、成效明顯的良好態(tài)勢.治理沙漠離不開優(yōu)質(zhì)的樹苗,現(xiàn)從苗圃中隨機地抽測了400株樹苗的高度(單位:),得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中實數(shù)的值和抽到的樹苗的高度在的株數(shù);(2)估計苗圃中樹苗的高度的平均數(shù)和中位數(shù).(同一組中數(shù)據(jù)用該組區(qū)間的中點值作代表)18.已知,(1)若,求(2)若,求實數(shù)的取值范圍.19.(1)若,求的范圍;(2)若,,且,,求.20.已知集合,集合.(Ⅰ)求、、;(Ⅱ)若集合且,求實數(shù)的取值范圍.21.已知向量m=(cos,sin),n=(2+sinx,2-cos),函數(shù)=m·n,x∈R.(1)求函數(shù)的最大值;(2)若且=1,求值.22.已知以點為圓心的圓過點和,線段的垂直平分線交圓于點、,且,(1)求直線的方程;(2)求圓的方程(3)設(shè)點在圓上,試探究使的面積為8的點共有幾個?證明你的結(jié)論
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】當(dāng)平面平面時,三棱錐體積最大,由此能求出結(jié)果【詳解】解:如圖,當(dāng)平面平面時,三棱錐體積最大取的中點,則平面,故直線和平面所成的角為,故選:【點睛】本題考查直線與平面所成角的求法,解題時要注意空間思維能力的培養(yǎng),屬于中檔題2、B【解析】先對三個數(shù)化簡,然后利用指數(shù)函數(shù)的單調(diào)性判斷即可【詳解】,,,因為在上為增函數(shù),且,所以,所以,故選:B3、D【解析】畫出函數(shù)的圖象,根據(jù)對稱性和對數(shù)函數(shù)的圖象和性質(zhì)即可求出【詳解】可畫函數(shù)圖象如下所示若關(guān)于的方程有四個不同的實數(shù)解,且,當(dāng)時解得或,關(guān)于直線對稱,則,令函數(shù),則函數(shù)在上單調(diào)遞增,故當(dāng)時故當(dāng)時所以即故選:【點睛】本題考查函數(shù)方程思想,對數(shù)函數(shù)的性質(zhì),數(shù)形結(jié)合是解答本題的關(guān)鍵,屬于難題.4、D【解析】在定義域每個區(qū)間上為減函數(shù),排除.是非奇非偶函數(shù),排除.故選.5、D【解析】對A,C利用特殊值即可判斷;對B,由對數(shù)函數(shù)的定義域即可判斷,對D,由指數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】解:對A,令,,則滿足,但,故A錯誤;對B,若使,則需滿足,但題中,故B錯誤;對C,同樣令,,則滿足,但,故C錯誤;對D,在上單調(diào)遞增,當(dāng)時,,故D正確.故選:D.6、A【解析】令t=-x2+2x﹣1,則y,故本題即求函數(shù)t的增區(qū)間,再結(jié)合二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間【詳解】令t=-x2+2x﹣1,則y,故本題即求函數(shù)t的增區(qū)間,由二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間為(-∞,1),所以函數(shù)的單調(diào)遞減區(qū)間為(-∞,1).故答案為A【點睛】本題主要考查指數(shù)函數(shù)和二次函數(shù)的單調(diào)性,考查復(fù)合函數(shù)的單調(diào)性,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.7、A【解析】根據(jù)題意,由函數(shù)的解析式分析可得在為增函數(shù)且,結(jié)合函數(shù)的奇偶性分析可得在上為增函數(shù),又由,則有,解可得的取值范圍,即可得答案.【詳解】根據(jù)題意,當(dāng)時,,則在為增函數(shù)且,又由是定義在上的奇函數(shù),則在上也為增函數(shù),則在上為增函數(shù),由,則有,解得:,即不等式的解集為;故選:A【點睛】本題考查函數(shù)奇偶性與單調(diào)性結(jié)合,解抽象函數(shù)不等式,有一定難度.8、C【解析】交點坐標(biāo)為,設(shè)直線方程為,即,則,解得,所以直線方程為,即,故選C點睛:首先利用點斜式設(shè)出直線,由距離公式求出斜率,解得直線方程.求直線的題型,基本方法是利用點斜式求直線方程,本題通過距離公式求斜率,寫出直線方程9、B【解析】將點(0,2)代入直線l:x﹣2y+k=0(k∈R)的方程中,可解得k的值.【詳解】由直線l:x﹣2y+k=0(k∈R)過點(0,2).所以點的坐標(biāo)滿足直線l的方程即則,故選:B.【點睛】本題考查點在直線上求參數(shù),屬于基礎(chǔ)題.10、D【解析】由韋恩圖可知陰影部分表示的集合為,求出,計算得到答案【詳解】陰影部分表示的集合為,故選【點睛】本題主要考查的是韋恩圖表達集合的關(guān)系和運算,屬于基礎(chǔ)題11、D【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性得到,根據(jù)指數(shù)函數(shù)的單調(diào)性得到,根據(jù)正弦函數(shù)的單調(diào)性得到.【詳解】易知,,因,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以,所以.故選:D.12、A【解析】,由此可推出【詳解】解:∵,,,∴,,,,故選:A【點睛】本題主要考查平面向量垂直的坐標(biāo)表示,考查平面向量的模,屬于基礎(chǔ)題二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】本題首先可以根據(jù)分別是方程的根得出,再根據(jù)即可得出,然后通過函數(shù)與函數(shù)的性質(zhì)即可得出,最后得出結(jié)果【詳解】因為,,,所以,因為,,所以,,因為函數(shù)與函數(shù)都是單調(diào)遞增函數(shù),前者在后者的上方,所以,綜上所述,【點睛】本題考查方程的根的比較大小,通常可通過函數(shù)性質(zhì)或者根的大致取值范圍進行比較,考查函數(shù)思想,考查推理能力,是中檔題14、【解析】由對數(shù)真數(shù)大于0,偶次根式被開方式大于等于0,列出不等式組求解即可得答案.【詳解】解:由,得,所以函數(shù)的定義域為,故答案為:.15、(1)(3)【解析】(1)根據(jù)定義域直接判斷;(2)分別求出值域即可判斷;(3)利用偶函數(shù)圖形的對稱性得出在上的單調(diào)性及銳角,可以判斷;(4)通過對數(shù)性質(zhì)及對數(shù)運算即可判斷.【詳解】(1)函數(shù)與函數(shù)的定義域都為.所以(1)正確.(2)函數(shù)的值域為而的值域為,所以值域不同,故(2)錯誤.(3)函數(shù)在定義R上的偶函數(shù)且在為減函數(shù),則函數(shù)在在為增函數(shù),又為銳角,則,所以,故(3)正確.(4)函數(shù)且,則,即,得,故(4)錯誤.故答案為:(1)(3).【點睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)的定義域與值域的求解,函數(shù)的奇偶性和單調(diào)性的判定,對數(shù)的運算,屬于函數(shù)知識的綜合應(yīng)用,是中檔題.16、或(答案不唯一)【解析】由條件知,函數(shù)是定義在R上的偶函數(shù)且值域為,可以寫出若干符合條件的函數(shù).【詳解】函數(shù)定義域為R,值域為且為偶函數(shù),滿足題意的函數(shù)解析式可以為:或【點睛】本題主要考查了函數(shù)的定義域、值域、奇偶性以,屬于中檔題.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1),342(2)189.8,190【解析】(1)由每個小長方形的面積的總和等于,即可通過列方程求出值,根據(jù)頻數(shù)樣本容量頻率即可求出抽到的樹苗的高度在的株數(shù);(2)由頻率分布直方圖中每個小長方形的面積與對應(yīng)小正方形底邊中點的橫坐標(biāo)的乘積之和即為平均數(shù),即可算出,利用平分頻率分布直方圖面積且垂直于橫軸的直線與橫軸交點的橫坐標(biāo)即為中位數(shù),即可算出.【小問1詳解】∵,∴,抽到的樹苗的高度在的株數(shù)為(株)【小問2詳解】苗圃中樹苗的高度的平均數(shù):設(shè)中位數(shù)為,因為,,則,,所以.18、(1);(2)【解析】(1)先化簡集合A和集合B,再求.(2)由A得再因為得到,即得.【詳解】(1)當(dāng)時,有得,由知得或,故.(2)由知得,因為,所以,得.【點睛】本題主要考查集合的化簡運算,考查集合中的參數(shù)問題,考查絕對值不等式和對數(shù)不等式的解法,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.19、(1);(2).【解析】(1)利用公式化簡函數(shù)解析式可得,將函數(shù)解析式代入不等式得,即可求得x的取值范圍;(2)由求得,根據(jù)的范圍求出,,從而求得,,再利用兩角差的余弦公式即可得解.【詳解】若,則,,(2)因為,所以,,因為,所以,,,【點睛】本題考查三角函數(shù)和差化積公式,兩角和與差的正弦公式,同角三角函數(shù)的平方關(guān)系,計算時注意角的取值范圍,屬于中檔題.20、(1),,;(2).【解析】(1)通過解不等式求得,故可求得,.求得,故可得.(2)由可得,結(jié)合數(shù)軸轉(zhuǎn)化為不等式組求解即可試題解析:(1),,∴,,∵,∴.(2)∵,∴,∴,解得.∴實數(shù)的取值范圍為[21、(1)f(x)的最大值是4(2)-【解析】(1)先由向量數(shù)量積坐標(biāo)表示得到函數(shù)的三角函數(shù)解析式,再將其化簡得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合條件的x的三角函數(shù)值,再有余弦的和角公式求的值【詳解】(1)因為f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因為f(x)=1,所以sin=.又因為x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【點睛】本題考查平面向量的綜合題22、(1);(2)或;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個人應(yīng)急資金公對私借款合同3篇
- 二零二五年度企業(yè)公務(wù)車使用及安全保障合同3篇
- 2025年度廢化學(xué)品回收與無害化處理合同樣板3篇
- 二零二五年度養(yǎng)豬場養(yǎng)殖廢棄物無害化處理合同3篇
- 2025年度年度甲級寫字樓辦公室租賃合同樣本3篇
- 二零二五年度木工次結(jié)構(gòu)工程監(jiān)理與施工合同2篇
- 二零二五年度英法德留學(xué)一站式服務(wù)合同3篇
- 2025年度農(nóng)村土地承包經(jīng)營權(quán)入股農(nóng)業(yè)合作社合同2篇
- 二零二五年度農(nóng)村荒山荒地生態(tài)旅游項目投資承包合同
- 2025年度水電設(shè)備安裝合同分包售后服務(wù)合同3篇
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之7:“5領(lǐng)導(dǎo)作用-5.1領(lǐng)導(dǎo)作用和承諾”(雷澤佳編制-2025B0)
- 2024年度通信設(shè)備維修服務(wù)合同范本3篇
- 安恒可信數(shù)據(jù)空間建設(shè)方案 2024
- 2024年學(xué)校與家長共同促進家校合作發(fā)展協(xié)議3篇
- C預(yù)應(yīng)力錨索框架梁施工方案(完整版)
- 參加團干部培訓(xùn)心得體會
- 中華民族共同體概論專家講座第一講中華民族共同體基礎(chǔ)理論
- 湖北省襄陽市2023-2024學(xué)年高一上學(xué)期期末考試化學(xué)試題(含答案)
- 浙江省金華市十校2023-2024學(xué)年高一上學(xué)期1月期末考試物理試題 含解析
- 物業(yè)管理師考試題庫單選題100道及答案解析
- 校園智能安防系統(tǒng)安裝合同
評論
0/150
提交評論