《全等三角形的判定》教案_第1頁(yè)
《全等三角形的判定》教案_第2頁(yè)
《全等三角形的判定》教案_第3頁(yè)
《全等三角形的判定》教案_第4頁(yè)
《全等三角形的判定》教案_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

《全等三角形的判定》教案《全等三角形的判定》教案1

〖教學(xué)目標(biāo)〗

◆1、探索兩個(gè)直角三角形全等的條件.

◆2、掌握兩個(gè)直角三角形全等的條件(hl).

◆3、了解角平分線的性質(zhì):角的內(nèi)部,到角兩邊距離相等的點(diǎn),在角平分線上,及其簡(jiǎn)單應(yīng)用.

〖教學(xué)重點(diǎn)與難點(diǎn)〗

◆教學(xué)重點(diǎn):直角三角形全等的判定的方法“hl”.

◆教學(xué)難點(diǎn):直角三角形判定方法的說(shuō)理過(guò)程.

〖教學(xué)過(guò)程〗

一、創(chuàng)設(shè)情境,引入新課:

教師演示一等腰三角形,沿底邊上高裁剪,讓同學(xué)們觀察兩個(gè)三角形是否全等?

二、合作學(xué)習(xí):

(1)回顧:判定兩個(gè)直角三角形全等已經(jīng)有哪些方法?

(2)有斜邊和一條直角邊對(duì)應(yīng)相等的.兩個(gè)三角形全等嗎?如何會(huì)全等,教師可啟發(fā)引導(dǎo)學(xué)生一起利用畫圖,疊合方法探索說(shuō)明兩個(gè)直角三角形全等的判定方法,可充分讓學(xué)生想象。不限定方法。

教師歸納出方法后,要學(xué)生注意兩點(diǎn):“hl”是僅適用于rt△的特殊方法。

(3)教師引導(dǎo)、學(xué)生練習(xí)p47

三、應(yīng)用新知,鞏固概念

例題講評(píng)

例:已知:p是∠aob內(nèi)一點(diǎn),pd⊥oa,pe⊥ob,d,e分別是垂足,且pd=pe,則點(diǎn)p在∠aob的平分線上,請(qǐng)說(shuō)明理由。

分析:引導(dǎo)猜想可能存在的rt△;構(gòu)造兩個(gè)全等的rt△;要說(shuō)明p在∠aob的平分線上,只要說(shuō)明∠dop=∠eop

小結(jié):角平分線的又一個(gè)性質(zhì):(判定一個(gè)點(diǎn)是否在一個(gè)角的平分線上的方法)

角的內(nèi)部,到角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上。

四、學(xué)生練習(xí),鞏固提高

練一練:p481.2.p493

五、小結(jié)回顧,反思提高

(1)本節(jié)內(nèi)容學(xué)的是什么?你認(rèn)為學(xué)習(xí)本節(jié)內(nèi)容應(yīng)注意些什么?

(2)學(xué)習(xí)本節(jié)內(nèi)容你有哪些體會(huì)?

(3)你認(rèn)為有沒有其他的方法可以證明直角三角形全等(勾股定理)

(4)你現(xiàn)在知道的有關(guān)角平分線的知識(shí)有哪些?

六、布置作業(yè)

《全等三角形的判定》教案2

課程內(nèi)容

邊邊邊判定定理

選用教材

人教版數(shù)學(xué)八年級(jí)上冊(cè)

授課人

崔志偉

授課章節(jié)

第十二章第二節(jié)

學(xué)時(shí)

1

教學(xué)重點(diǎn)

掌握全等三角形的判定定理邊邊邊,能運(yùn)用該定理解決實(shí)際問(wèn)題。

教學(xué)難點(diǎn)

探索三角形全等的條件,以及運(yùn)用邊邊邊定理畫一角等于已知角

教學(xué)方法

學(xué)生合作探究法、教師講解結(jié)合談話法等綜合教學(xué)方法

教學(xué)手段

黑板板書教學(xué)

課堂教學(xué)設(shè)計(jì)

階段

教學(xué)內(nèi)容

導(dǎo)入部分

采用復(fù)習(xí)導(dǎo)入,教師首先提問(wèn)學(xué)生回顧全等三角形的定義,以及全等三角形的性質(zhì)。

學(xué)生在復(fù)習(xí)以上知識(shí)的條件下教師做出解釋,上節(jié)課我們已經(jīng)學(xué)習(xí)了三角形在滿足三邊對(duì)應(yīng)相等,三角對(duì)應(yīng)相等,則兩三角形全等,那么在實(shí)際的運(yùn)用過(guò)程中,需要這么多條件運(yùn)用會(huì)很不方便,那么我們很容易想到,能不能簡(jiǎn)化條件,得出三角形全等呢?由此引出課題全等三角形的判定。

階段

課堂教學(xué)設(shè)計(jì)

課程新授

教師讓學(xué)生大膽想象,可以從一組對(duì)應(yīng)關(guān)系相等開始探究,逐步上升到兩組對(duì)應(yīng)關(guān)系相等三組對(duì)應(yīng)關(guān)系相等。

但是為了節(jié)約時(shí)間,可以讓學(xué)生從兩組開始,如若兩組都不行,那一組肯定也不行,反之如若兩組條件就足夠了,再回頭看看一組的情況。

接下來(lái)學(xué)生在教師的提問(wèn)下思考二組對(duì)應(yīng)條件的所有可能的情況,預(yù)設(shè)會(huì)有思考不全面的同學(xué),教師即使揭示在一組邊與一組角相等的情況下,邊與角的關(guān)系可以為相鄰,也有可能為相對(duì)。

學(xué)生在教師的提示下,探索發(fā)現(xiàn)滿足兩組對(duì)應(yīng)關(guān)系相等的三角形不一定全等,由此可以斷定一組對(duì)應(yīng)關(guān)系相等也不能作為判定三角形全等的條件。接下來(lái)直接考慮三組對(duì)應(yīng)相等關(guān)系的情況。

首先引導(dǎo)學(xué)生對(duì)三組對(duì)應(yīng)關(guān)系相等進(jìn)行分類。

預(yù)設(shè)學(xué)生部分可以全部考慮到,部分學(xué)生考慮不周到,這時(shí)教師可以請(qǐng)會(huì)的同學(xué)展示被同學(xué)忽略的情況即兩組角與一組對(duì)邊對(duì)應(yīng)相等時(shí),邊可以為對(duì)邊,也可以為鄰邊。

本節(jié)課將引導(dǎo)學(xué)生探索三邊相等的情形,有了前面兩組對(duì)應(yīng)相等的經(jīng)驗(yàn),預(yù)設(shè)學(xué)生根據(jù)尺規(guī)作圖可以畫出三邊等于已知三角形的三角形,接下來(lái)通過(guò)三角形全等的定義,讓學(xué)生動(dòng)手操作進(jìn)行驗(yàn)證,發(fā)現(xiàn)可以完全重合,由此我們得到三組邊對(duì)應(yīng)相等的三角形全等。即SSS,教師解釋S為英文邊,side的首字母。

接下來(lái)請(qǐng)同學(xué)說(shuō)出已知三角形與所作三角形之間存在的對(duì)應(yīng)相等關(guān)系,預(yù)設(shè)學(xué)生可以很輕易說(shuō)出。

由此教師揭示,實(shí)際上我們還學(xué)回了一個(gè)做角等于一只角的`另外一種做法,即運(yùn)用尺規(guī)作圖畫一角等于已知角。接下來(lái),教師稍作解釋,請(qǐng)學(xué)生探究討論作圖步驟。看誰(shuí)的最簡(jiǎn)便。

學(xué)生探索過(guò)后,教師請(qǐng)學(xué)生回答自己的作圖步驟,最后由教師板書最簡(jiǎn)易的作圖步驟。

之后我將用練習(xí)的方式,加深同學(xué)對(duì)邊邊邊判定定理的理解并加強(qiáng)應(yīng)用能力。

作業(yè)

作業(yè)為書上的練習(xí)第二題,以及課后作業(yè)的第四題對(duì)應(yīng)基礎(chǔ)性練習(xí)即鞏固性練習(xí)。

板書設(shè)計(jì)

采用歸納式的板書設(shè)計(jì),主要板書兩種即三種對(duì)應(yīng)關(guān)系相等的種類,邊邊邊判定定理的內(nèi)容以及畫一角等于已知角的步驟以及重要練習(xí)的過(guò)程。

小結(jié)

本結(jié)課內(nèi)容比較多,主要體現(xiàn)在全等三角形判定的探索過(guò)程,為了節(jié)約時(shí)間,我選擇讓學(xué)生直接從兩個(gè)條件開始探究,同時(shí)也不影響學(xué)生理解,教師主要以引導(dǎo)為主,學(xué)生自主探索學(xué)習(xí)。

《全等三角形的判定》教案3

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):

(1)掌握已知三邊畫三角形的方法;

(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;

(3)會(huì)添加較明顯的輔助線.

2、能力目標(biāo):

(1)通過(guò)尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;

(2)通過(guò)公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.

3、情感目標(biāo):

(1)在公理的形成過(guò)程中滲透:實(shí)驗(yàn)、觀察、歸納;

(2)通過(guò)變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.

教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過(guò)的各種判定方法判定三角形全等。

教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚€(gè)三角形全等。

教學(xué)用具:直尺,微機(jī)

教學(xué)方法:自學(xué)輔導(dǎo)

教學(xué)過(guò)程:

1、新課引入

投影顯示

問(wèn)題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對(duì)窗框測(cè)量哪幾個(gè)數(shù)據(jù)?如果你手頭沒有測(cè)量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

這個(gè)問(wèn)題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問(wèn)題的本質(zhì):三角形的三個(gè)元素――三條邊。

2、公理的獲得

問(wèn):通過(guò)上面問(wèn)題的分析,滿足什么條件的兩個(gè)三角形全等?

讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫圖法)

公理:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

應(yīng)用格式:(略)

強(qiáng)調(diào)說(shuō)明:

(1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫出結(jié)論。

(2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)

(3)、此公理與前面學(xué)過(guò)的公理區(qū)別與聯(lián)系

(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的`條件”做好了準(zhǔn)備,進(jìn)行了溝通。

(5)說(shuō)明AAA與SSA不能判定三角形全等。

3、公理的應(yīng)用

(1)講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。

例1如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架

求證:AD⊥BC

分析:(設(shè)問(wèn)程序)

(1)要證AD⊥BC只要證什么?

(2)要證∠1=只要證什么?

(3)要證∠1=∠2只要證什么?

(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

證明:(略)

(2)講解例2(投影例2)

例2已知:如圖AB=DC,AD=BC

求證:∠A=∠C

(1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。

(2)找學(xué)生代表口述證明思路。

思路1:連接BD(如圖)

證△ABD≌△CDB(SSS)先得∠A=∠C

思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

(3)教師共同討論后,說(shuō)明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫出證明,一名學(xué)生板書,教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

例3如圖,已知AB=AC,DB=DC

(1)若E、F、G、H分別是各邊的中點(diǎn),求證:EH=FG

(2)若AD、BC連接交于點(diǎn)P,問(wèn)AD、BC有何關(guān)系?證明你的結(jié)論。

學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路

讓學(xué)生在練習(xí)本上寫出證明,然后選擇投影顯示。

證明:(略)

說(shuō)明:證直線垂直可證兩直線夾角等于,而由兩鄰補(bǔ)角相等證兩直線的夾角等于,又是很重要的一種方法。

例4如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

求證:AC=2AE.

證明:(略)

學(xué)生口述證明思路,教師強(qiáng)調(diào)說(shuō)明:“中線”條件下的常規(guī)作輔助線法。

5、課堂小結(jié):

(1)判定三角形全等的方法:3個(gè)公理1個(gè)推論(SAS、ASA、AAS、SSS)

在這些方法中,每一個(gè)都需要3個(gè)條件,3個(gè)條件中都至少包含條邊。

(2)三種方法的綜合運(yùn)用

讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。

6、布置作業(yè):

a、書面作業(yè)P70#11、12

b、上交作業(yè)P70#14P71B組3

《全等三角形的判定》教案4

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):

(1)熟記邊角邊公理的內(nèi)容;

(2)能應(yīng)用邊角邊公理證明兩個(gè)三角形全等。

2、能力目標(biāo):

(1)通過(guò)“邊角邊”公理的運(yùn)用,提高學(xué)生的邏輯思維能力;

(2)通過(guò)觀察幾何圖形,培養(yǎng)學(xué)生的識(shí)圖能力。

3、情感目標(biāo):

(1)通過(guò)幾何證明的教學(xué),使學(xué)生養(yǎng)成尊重客觀事實(shí)和形成質(zhì)疑的習(xí)慣;

(2)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受,培養(yǎng)學(xué)生勇于創(chuàng)新,多方位審視問(wèn)題的創(chuàng)造技巧。

教學(xué)重點(diǎn):學(xué)會(huì)運(yùn)用公理證明兩個(gè)三角形全等。

教學(xué)難點(diǎn):在較復(fù)雜的圖形中,找出證明兩個(gè)三角形全等的條件。

教學(xué)用具:直尺、微機(jī)

教學(xué)方法:自學(xué)輔導(dǎo)式

教學(xué)過(guò)程:

1、公理的發(fā)現(xiàn)

(1)畫圖:(投影顯示)

教師點(diǎn)撥,學(xué)生邊學(xué)邊畫圖。

(2)實(shí)驗(yàn)

讓學(xué)生把所畫的剪下,放在原三角形上,發(fā)現(xiàn)什么情況?(兩個(gè)三角形重合)

這里一定要讓學(xué)生動(dòng)手操作。

(3)公理

啟發(fā)學(xué)生發(fā)現(xiàn)、總結(jié)邊角邊公理:有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫成“邊角邊”或“SAS”)

作用:是證明兩個(gè)三角形全等的依據(jù)之一。

應(yīng)用格式:

強(qiáng)調(diào):

1、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫出結(jié)論。

2、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊,公共角、對(duì)頂角、鄰補(bǔ)角、外角、平角等)所以找條件歸結(jié)成兩句話:已知中找,圖形中看。

3、平面幾何中常要證明角相等和線段相等,其證明常用方法:

證角相等――對(duì)頂角相等;同角(或等角)的余角(或補(bǔ)角)相等;兩直線平行,同位角相等,內(nèi)錯(cuò)角相等;角平分線定義;等式性質(zhì);全等三角形的對(duì)應(yīng)角相等地。

證線段相等的方法――中點(diǎn)定義;全等三角形的對(duì)應(yīng)邊相等;等式性質(zhì)。

2、公理的應(yīng)用

(1)講解例1。學(xué)生分析完成,教師注重完成后的總結(jié)。

分析:(設(shè)問(wèn)程序)

“SAS”的三個(gè)條件是什么?

已知條件給出了幾個(gè)?

由圖形可以得到幾個(gè)條件?

解:(略)

(2)講解例2

投影例2:

例2如圖2,AE=CF,AD∥BC,AD=CB,

求證:

學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路

讓學(xué)生在練習(xí)本上定出證明,一名學(xué)生板書。教師強(qiáng)調(diào)

證明格式:用大括號(hào)寫出公理的'三個(gè)條件,最后寫出

結(jié)論。(3)講解例3(投影)

證明:(略)

學(xué)生分析思路,寫出證明過(guò)程。

(投影展示學(xué)生的作業(yè),教師點(diǎn)評(píng))

(4)講解例4(投影)

證明:(略)

學(xué)生口述過(guò)程。投影展示證明過(guò)程。

教師強(qiáng)調(diào)證明線段相等的幾種常見方法。

(5)講解例5(投影)

證明:(略)

學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。

師生共同討論后,讓學(xué)生口述證明思路。

教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

3、課堂小結(jié):

(1)判定三角形全等的方法:SAS

(2)公理應(yīng)用的書寫格式

(3)證明線段、角相等常見的方法有哪些?

讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。

6、布置作業(yè)

a書面作業(yè)P56#6、7

b上交作業(yè)P57B組1

思考題:

板書設(shè)計(jì):

探究活動(dòng)

《全等三角形的判定》教案5

【教學(xué)目標(biāo)】:

1、知識(shí)與技能:

1.三角形全等的條件:角邊角、角角邊.

2.三角形全等條件小結(jié).

3.掌握三角形全等的“角邊角”“角角邊”條件.

4.能運(yùn)用全等三角形的條件,解決簡(jiǎn)單的推理證明問(wèn)題.

2、過(guò)程與方法:

1.經(jīng)歷探究全等三角形條件的過(guò)程,進(jìn)一步體會(huì)操作、?歸納獲得數(shù)學(xué)規(guī)律的過(guò)程.

2.掌握三角形全等的“角邊角”“角角邊”條件.

3.能運(yùn)用全等三角形的條件,解決簡(jiǎn)單的推理證明問(wèn)題.

3、情感態(tài)度與價(jià)值觀:

通過(guò)畫圖、探究、歸納、交流,使學(xué)生獲得一些研究問(wèn)題的經(jīng)驗(yàn)和方法,發(fā)展實(shí)踐能力和創(chuàng)新精神

【教學(xué)情景導(dǎo)入】:

提出問(wèn)題,創(chuàng)設(shè)情境

復(fù)習(xí):

(1)三角形中已知三個(gè)元素,包括哪幾種情況?

三個(gè)角、三個(gè)邊、兩邊一角、兩角一邊.

(2)到目前為止,可以作為判別兩三角形全等的方法有幾種?各是什么?

三種:

①定義;

②SSS;

③SAS.

2.[師]在三角形中,已知三個(gè)元素的四種情況中,我們研究了三種,今天我們接著探究已知兩角一邊是否可以判斷兩三角形全等呢?

導(dǎo)入新課

[師]三角形中已知兩角一邊有幾種可能?

[生]1.兩角和它們的夾邊.

2.兩角和其中一角的對(duì)邊.

做一做:

三角形的兩個(gè)內(nèi)角分別是60°和80°,它們的夾邊為4cm,?你能畫一個(gè)三角形同時(shí)滿足這些條件嗎?將你畫的'三角形剪下,與同伴比較,觀察它們是不是全等,你能得出什么規(guī)律?

學(xué)生活動(dòng):自己動(dòng)手操作,然后與同伴交流,發(fā)現(xiàn)規(guī)律.

教師活動(dòng):檢查指導(dǎo),幫助有困難的同學(xué).

活動(dòng)結(jié)果展示:

以小組為單位將所得三角形重疊在一起,發(fā)現(xiàn)完全重合,這說(shuō)明這些三角形全等.

提煉規(guī)律:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成“角邊角”或“ASA”).

[師]我們剛才做的三角形是一個(gè)特殊三角形,隨意畫一個(gè)三角形ABC,?能不能作一個(gè)△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

[生]能.

學(xué)生口述畫法,教師進(jìn)行多媒體課件演示,使學(xué)生加深對(duì)“ASA”的理解.

[生]①先用量角器量出∠A與∠B的度數(shù),再用直尺量出AB的邊長(zhǎng).

②畫線段A′B′,使A′B′=AB.

③分別以A′、B′為頂點(diǎn),A′B′為一邊作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

④射線A′D與B′E交于一點(diǎn),記為C′即可得到△A′B′C′.

將△A′B′C′與△ABC重疊,發(fā)現(xiàn)兩三角形全等.

[師]

于是我們發(fā)現(xiàn)規(guī)律:

兩角和它們的夾邊對(duì)應(yīng)相等的兩三角形全等(可以簡(jiǎn)寫成“角邊角”或“ASA”).

這又是一個(gè)判定三角形全等的條件.[生]在一個(gè)三角形中兩角確定,第三個(gè)角一定確定.我們是不是可以不作圖,用“ASA”推出“兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩三角形全等”呢?

[師]你提出的問(wèn)題很好.溫故而知新嘛,請(qǐng)同學(xué)們來(lái)驗(yàn)證這種想法.

【教學(xué)過(guò)程設(shè)計(jì)】:

如圖,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全等嗎?能利用角邊角條件證明你的結(jié)論嗎?

證明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

∠A=∠D,∠B=∠E

∴∠A+∠B=∠D+∠E

∴∠C=∠F

在△ABC和△DEF中

∴△ABC≌△DEF(ASA).

于是得規(guī)律:

兩個(gè)角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成“角角邊”或“AAS”).

[例]如下圖,D在AB上,E在AC上,AB=AC,∠B=∠C.

求證:AD=AE.

[師生共析]AD和AE分別在△ADC和△AEB中,所以要證AD=AE,只需證明△ADC≌△AEB即可.

學(xué)生寫出證明過(guò)程.

證明:在△ADC和△AEB中

所以△ADC≌△AEB(ASA)

所以AD=AE.

[師]到此為止,在三角形中已知三個(gè)條件探索三角形全等問(wèn)題已全部結(jié)束.請(qǐng)同學(xué)們把三角形全等的判定方法做一個(gè)小結(jié).

學(xué)生活動(dòng):自我回憶總結(jié),然后小組討論交流、補(bǔ)充.

有五種判定三角形全等的條件.

1.全等三角形的定義

2.邊邊邊(SSS)

3.邊角邊(SAS)

4.角邊角(ASA)

5.角角邊(AAS)

推證兩三角形全等,要學(xué)會(huì)聯(lián)系思考其條件,找它們對(duì)應(yīng)相等的元素,這樣有利于獲得解題途徑.

練習(xí):圖中的兩個(gè)三角形全等嗎?請(qǐng)說(shuō)明理由.

答案:圖(1)中由“ASA”可證得△ACD≌△ACB.圖(2)由“AAS”可證得△ACE≌△BDC.

【課堂作業(yè)】1.如圖,BO=OC,AO=DO,則△AOB與△DOC全等嗎?

小亮的思考過(guò)程如下.

△AOB≌△DOC

2、已知△ABC和△A′B′C′,下列條件中,不能保證△ABC和△A′B′C?′全等的是()

A.AB=A′B′AC=A′C′BC=B′C′

B.∠A=∠A′∠B=∠B′AC=A′C′

C.AB=A′B′AC=A′C′∠A=∠A′

D.AB=A′B′BC=B′C′∠C=∠C′

3、要說(shuō)明△ABC和△A′B′C′全等,已知條件為AB=A′B′,∠A=∠A′,不需要的條件為()

A.∠B=∠B′B.∠C=∠C′;C.AC=A′C′D.BC=B′C′

4、要說(shuō)明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,則不需要的條件是(A.∠C=∠C′B.AB=A′B′;C.AC=A′C′D.BC=B′C′

5、兩個(gè)三角形全等,那么下列說(shuō)法錯(cuò)誤的是()

A.對(duì)應(yīng)邊上的三條高分別相等;B.對(duì)應(yīng)邊的三條中線分別相等

C.兩個(gè)三角形的面積相等;D.兩個(gè)三角形的任何線段相等

6、如圖,已知∠A=∠D,AB=DE,AF=CD,BC=EF.

《全等三角形的判定》教案6

教學(xué)建議

直角三角形全等的判定

知識(shí)結(jié)構(gòu)

重點(diǎn)與難點(diǎn)分析:

本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識(shí)結(jié)構(gòu)完整、知識(shí)理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問(wèn)題、動(dòng)手試驗(yàn)、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動(dòng),將教與學(xué)融為一體。具體說(shuō)明如下:

(1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教

本節(jié)課開始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠兀繉W(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。

(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力

本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。

公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。

綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。

教法建議:

由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”

本節(jié)課開始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠??學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。

(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力

本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。

公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。

綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):

(1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;

(2)掌握斜邊、直角邊公理;

(3)能夠運(yùn)用HL公理及其他三角形全等的判定方法進(jìn)行證明和計(jì)算.

2、能力目標(biāo):

(1)通過(guò)尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;

(2)通過(guò)公理的`初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.

3、情感目標(biāo):

(1)在公理的形成過(guò)程中滲透:實(shí)驗(yàn)、觀察、歸納;

(2)通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的系統(tǒng)特征。

教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過(guò)的各種判定方法判定三角形全等。

教學(xué)難點(diǎn):靈活應(yīng)用五種方法(SAS、ASA、AAS、SSS、HL)來(lái)判定直角三角形全等。

教學(xué)用具:直尺,微機(jī)

教學(xué)方法:自學(xué)輔導(dǎo)

教學(xué)過(guò)程:

1、新課引入

投影顯示

問(wèn)題:判定三角形全等的方法有四種,若這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠兀?/p>

這個(gè)問(wèn)題讓學(xué)生思考分析討論后回答,教師補(bǔ)充完善。

2、公理的獲得

讓學(xué)生概括出HL公理。然后和學(xué)生一起畫圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫圖法)

公理:有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

應(yīng)用格式:(略)

強(qiáng)調(diào)說(shuō)明:

(1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫出結(jié)論。

(2)、判定兩個(gè)直角三角形全等的方法。

(3)特殊三角形研究思想。

3、公理的應(yīng)用

(1)講解例1(投影例1)

例1求證:有一條直角邊和斜邊上的高對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。找學(xué)生代表口述證明思路。

分析:首先要分清題設(shè)和結(jié)論,然后按要求畫出圖形,根據(jù)題意寫出、已知求證后,再寫出證明過(guò)程。

證明:(略)

(2)講解例2。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。)

例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.

求證:BE=CF

分析:BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF

證明:(略)

(3)講解例3(投影例3)

例3:如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過(guò)A的一條直線,且B、C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E,求證:

(1)BD=DE+CE

(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖4位置時(shí)(BD<CE),其余條件不變,問(wèn)BD與DE、CE的關(guān)系如何,請(qǐng)證明;

(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖5時(shí)(BD>CE),其余條件不變,BD與DE、CE的關(guān)系怎樣?請(qǐng)直接寫出結(jié)果,不須證明

學(xué)生口述證明思路,教師強(qiáng)調(diào)說(shuō)明:閱讀問(wèn)題的思考方法及思想。

4、課堂小結(jié):

(1)判定直角三角形全等的方法:5個(gè)(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。

(2)直角三角形判定方法的綜合運(yùn)用

讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。

5、布置作業(yè):

a、書面作業(yè)P79#7、9

b、上交作業(yè)P80#5、6

板書設(shè)計(jì):

探究活動(dòng)

直角形全等的判定

如圖(1)A、E、F、C在一條直線上,AE=CF,過(guò)E、F分別作DE⊥AC,BF⊥AC,

若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動(dòng)變?yōu)槿鐖D(2)時(shí),其余條件不變,上述結(jié)論是否成立,請(qǐng)說(shuō)明理由。

《全等三角形的判定》教案7

【教學(xué)目標(biāo)】

1.使學(xué)生理解邊邊邊公理的內(nèi)容,能運(yùn)用邊邊邊公理證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;

2.繼續(xù)培養(yǎng)學(xué)生畫圖、實(shí)驗(yàn),發(fā)現(xiàn)新知識(shí)的能力.

【重點(diǎn)難點(diǎn)】

1.難點(diǎn):讓學(xué)生掌握邊邊邊公理的內(nèi)容和運(yùn)用公理的自覺性;

2.重點(diǎn):靈活運(yùn)用SSS判定兩個(gè)三角形是否全等.

【教學(xué)過(guò)程】

一、創(chuàng)設(shè)問(wèn)題情境,引

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論