版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
考向33空間中的平行關(guān)系1.(2021·浙江高考真題)如圖已知正方體SKIPIF1<0,M,N分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),則()A.直線SKIPIF1<0與直線SKIPIF1<0垂直,直線SKIPIF1<0平面SKIPIF1<0B.直線SKIPIF1<0與直線SKIPIF1<0平行,直線SKIPIF1<0平面SKIPIF1<0C.直線SKIPIF1<0與直線SKIPIF1<0相交,直線SKIPIF1<0平面SKIPIF1<0D.直線SKIPIF1<0與直線SKIPIF1<0異面,直線SKIPIF1<0平面SKIPIF1<0【答案】A【分析】由正方體間的垂直、平行關(guān)系,可證SKIPIF1<0平面SKIPIF1<0,即可得出結(jié)論.【詳解】連SKIPIF1<0,在正方體SKIPIF1<0中,M是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0為SKIPIF1<0中點(diǎn),又N是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0不垂直SKIPIF1<0,所以SKIPIF1<0不垂直SKIPIF1<0則SKIPIF1<0不垂直平面SKIPIF1<0,所以選項(xiàng)B,D不正確;在正方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,且直線SKIPIF1<0是異面直線,所以選項(xiàng)C錯(cuò)誤,選項(xiàng)A正確.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:熟練掌握正方體中的垂直、平行關(guān)系是解題的關(guān)鍵,如兩條棱平行或垂直,同一個(gè)面對(duì)角線互相垂直,正方體的對(duì)角線與面的對(duì)角線是相交但不垂直或異面垂直關(guān)系.2.(2017·全國(guó)高考真題(文))如圖,在下列四個(gè)正方體中,SKIPIF1<0為正方體的兩個(gè)頂點(diǎn),SKIPIF1<0為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線SKIPIF1<0與平面SKIPIF1<0不平行的是()A. B. C. D.【答案】A【分析】利用線面平行的判定,結(jié)合正方體的性質(zhì)判斷直線SKIPIF1<0與平面SKIPIF1<0是否平行.【詳解】A:由正方體的性質(zhì)知:SKIPIF1<0平行于SKIPIF1<0與底面中心的連線,而該線段與面SKIPIF1<0交于SKIPIF1<0點(diǎn),故SKIPIF1<0與面SKIPIF1<0不平行;B:SKIPIF1<0且SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0;C:SKIPIF1<0且SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0;D:SKIPIF1<0且SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0.故選:A.1.判斷或證明線面平行的常用方法①利用線面平行的定義(無公共點(diǎn)).②利用線面平行的判定定理(a?α,b?α,a∥b?a∥α).③利用面面平行的性質(zhì)(α∥β,a?α?a∥β).④利用面面平行的性質(zhì)(α∥β,a?β,a∥α?a∥β).2.應(yīng)用線面平行的性質(zhì)定理的關(guān)鍵是確定交線的位置,有時(shí)需要經(jīng)過已知直線作輔助平面確定交線.3.證明面面平行的方法(1)面面平行的定義.(2)面面平行的判定定理.(3)垂直于同一條直線的兩個(gè)平面平行.(4)兩個(gè)平面同時(shí)平行于第三個(gè)平面,那么這兩個(gè)平面平行.(5)利用“線線平行”“線面平行”“面面平行”的相互轉(zhuǎn)化.1.線面平行的判定定理和性質(zhì)定理文字語言圖形語言符號(hào)語言判定定理如果平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行(簡(jiǎn)記為“線線平行?線面平行”)eq\b\lc\\rc\}(\a\vs4\al\co1(l∥a,a?α,l?α))?l∥α性質(zhì)定理一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行(簡(jiǎn)記為“線面平行?線線平行”)eq\b\lc\\rc\}(\a\vs4\al\co1(l∥α,l?β,α∩β=b))?l∥b2.面面平行的判定定理和性質(zhì)定理文字語言圖形語言符號(hào)語言判定定理一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行(簡(jiǎn)記為“線面平行?面面平行”)eq\b\lc\\rc\}(\a\vs4\al\co1(a∥β,b∥β,a∩b=P,a?α,b?α))?α∥β性質(zhì)定理如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行eq\b\lc\\rc\}(\a\vs4\al\co1(α∥β,α∩γ=a,β∩γ=b))?a∥b【知識(shí)拓展】平行關(guān)系中的三個(gè)重要結(jié)論(1)垂直于同一條直線的兩個(gè)平面平行,即若a⊥α,a⊥β,則α∥β.(2)平行于同一個(gè)平面的兩個(gè)平面平行,即若α∥β,β∥γ,則α∥γ.(3)若α∥β,a?α,則a∥β.1.(2021·全國(guó)高三(文))如圖在正方體SKIPIF1<0中,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在底面SKIPIF1<0內(nèi),且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0與底面SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國(guó)高三專題練習(xí)(理))已知在三棱錐SKIPIF1<0中,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0(含邊界位置)內(nèi),則滿足SKIPIF1<0平面SKIPIF1<0的點(diǎn)SKIPIF1<0的軌跡為()A.線段SKIPIF1<0,SKIPIF1<0的中點(diǎn)連接而成的線段B.線段SKIPIF1<0的中點(diǎn)與線段SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn)連接而成的線段C.線段SKIPIF1<0的中點(diǎn)與線段SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn)連接而成的線段D.線段SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn)與線段SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn)連接而成的線段3.(2021·福建省南安第一中學(xué)高三)如圖,在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且滿足SKIPIF1<0,SKIPIF1<0是側(cè)面四邊形SKIPIF1<0內(nèi)一動(dòng)點(diǎn)(含邊界),若SKIPIF1<0平面SKIPIF1<0,則線段SKIPIF1<0長(zhǎng)度的取值范圍是_________.4.(2021·全國(guó)高三專題練習(xí)(文))如圖,在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),則下列四個(gè)結(jié)論中成立的是________.(寫出對(duì)應(yīng)的序號(hào))①SKIPIF1<0平面SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④長(zhǎng)方體SKIPIF1<0的外接球表面積為SKIPIF1<0.1.(2021·全國(guó)高三(文))如圖,在直三棱柱ABC﹣A1B1C1中,底面ABC為等邊三角形,O為AC1與A1C的交點(diǎn),D為AB的中點(diǎn),則下列結(jié)論:①DOSKIPIF1<0平面ABC1;②DOSKIPIF1<0平面A1BC1;③DC⊥平面ABB1A1;④DC⊥平面ABC1.其中所有正確結(jié)論的序號(hào)為()A.①② B.①③ C.②③ D.②④2.(2021·四川仁壽一中高三(文))正方體SKIPIF1<0的棱長(zhǎng)為SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn).則下列說法錯(cuò)誤的是()A.直線A1G與平面AEF平行B.直線DD1與直線AF垂直C.異面直線A1G與EF所成角的余弦值為SKIPIF1<0D.平面AEF截正方體所得的截面面積為SKIPIF1<03.(2021·全國(guó)高三專題練習(xí)(理))如圖,在直四棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別在棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面,則下列結(jié)論錯(cuò)誤的是()A.任意點(diǎn)SKIPIF1<0,都有SKIPIF1<0B.任意點(diǎn)SKIPIF1<0,四邊形SKIPIF1<0不可能為平行四邊形C.存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為等腰直角三角形D.存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0平面SKIPIF1<04.(2021·全國(guó)高三專題練習(xí)(文))已知SKIPIF1<0是兩個(gè)不同的平面,m,n是平面SKIPIF1<0和SKIPIF1<0之外的兩條不同的直線,且SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.(2021·全國(guó)高三專題練習(xí)(理))已知直線SKIPIF1<0和平面SKIPIF1<0,則下列結(jié)論一定成立的是()A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<06.(2022·全國(guó))已知長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,SKIPIF1<0,平面SKIPIF1<0過線段SKIPIF1<0的中點(diǎn)以及點(diǎn)SKIPIF1<0,若平面SKIPIF1<0截長(zhǎng)方體所得截面為平行四邊形,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2021·江蘇高三開學(xué)考試)在棱長(zhǎng)為2的正方體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn).當(dāng)點(diǎn)SKIPIF1<0在平面SKIPIF1<0內(nèi)運(yùn)動(dòng)時(shí),有SKIPIF1<0平面SKIPIF1<0,則線段SKIPIF1<0的最小值為()A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2021·全國(guó))在長(zhǎng)方體SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若平面SKIPIF1<0平面SKIPIF1<0,且與四面體SKIPIF1<0的每個(gè)面都相交,則平面SKIPIF1<0截四面體SKIPIF1<0所得截面面積的最大值為___________.9.(2019·湖南高考模擬(文))如圖所示,正方體SKIPIF1<0的棱長(zhǎng)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0點(diǎn)是正方形SKIPIF1<0內(nèi)的動(dòng)點(diǎn),若SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0點(diǎn)的軌跡長(zhǎng)度為______.10.(2021·甘肅蘭州·高三(文))如圖,正方體SKIPIF1<0的棱長(zhǎng)為SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,SKIPIF1<0,過SKIPIF1<0的平面SKIPIF1<0與平面SKIPIF1<0平行,且與正方體各面相交得到截面多邊形,則該截面多邊形的周長(zhǎng)為________.11.(2021·樂清市知臨中學(xué)高三月考)如圖,在三棱錐SKIPIF1<0中,底面SKIPIF1<0是邊長(zhǎng)2的等邊三角形,SKIPIF1<0,點(diǎn)F在線段BC上,且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為的SKIPIF1<0中點(diǎn).(Ⅰ)求證:SKIPIF1<0//平面SKIPIF1<0;(Ⅱ)若二面角SKIPIF1<0的平面角的大小為SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.12.(2022·全國(guó)高三專題練習(xí))如圖,在三棱柱SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,E,F(xiàn)分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn).(Ⅰ)在四邊形SKIPIF1<0內(nèi)是否存在點(diǎn)G,使平面SKIPIF1<0平面SKIPIF1<0?若存在,求出該點(diǎn)的位置;若不存在,請(qǐng)說明理由;(Ⅱ)設(shè)D是SKIPIF1<0的中點(diǎn),求SKIPIF1<0與平面SKIPIF1<0所成角SKIPIF1<0的正弦值.1.(2018·浙江高考真題)已知直線SKIPIF1<0和平面SKIPIF1<0,SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.(2015·福建高考真題(理))若SKIPIF1<0是兩條不同的直線,SKIPIF1<0垂直于平面SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件3.(2015·北京高考真題(理))設(shè)SKIPIF1<0,SKIPIF1<0是兩個(gè)不同的平面,SKIPIF1<0是直線且SKIPIF1<0.“SKIPIF1<0”是“SKIPIF1<0”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.(2009·寧夏高考真題(理))如圖,正方體的棱線長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且,則下列結(jié)論中錯(cuò)誤的是A.SKIPIF1<0B.SKIPIF1<0C.三棱錐SKIPIF1<0的體積為定值D.異面直線SKIPIF1<0所成的角為定值5.(2008·湖南高考真題(理))設(shè)有直線m、n和平面SKIPIF1<0、SKIPIF1<0.下列四個(gè)命題中,正確的是A.若m∥SKIPIF1<0,n∥SKIPIF1<0,則m∥nB.若mSKIPIF1<0SKIPIF1<0,nSKIPIF1<0SKIPIF1<0,m∥SKIPIF1<0,n∥SKIPIF1<0,則SKIPIF1<0∥SKIPIF1<0C.若SKIPIF1<0SKIPIF1<0SKIPIF1<0,mSKIPIF1<0SKIPIF1<0,則mSKIPIF1<0SKIPIF1<0D.若SKIPIF1<0SKIPIF1<0SKIPIF1<0,mSKIPIF1<0SKIPIF1<0,mSKIPIF1<0SKIPIF1<0,則m∥SKIPIF1<06.(2011·遼寧高考真題(理))如圖,四棱錐S-ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中不正確的是()A.AC⊥SBB.AB∥平面SCDC.SA與平面SBD所成的角等于SC與平面SBD所成的角D.AB與SC所成的角等于DC與SA所成的角7.(2011·福建高考真題(文))如圖,在正方體ABCD-A1B1C1D1中,AB=2,點(diǎn)E為AD的中點(diǎn),點(diǎn)F在CD上.若EF∥平面AB1C,則線段EF的長(zhǎng)度等于________.8.(2013·江西高考真題(文))如圖,正方體的底面與正四面體的底面在同一平面α上,且AB//CD,則直線EF與正方體的六個(gè)面所在的平面相交的平面?zhèn)€數(shù)為______________9.(2009·江蘇高考真題)設(shè)SKIPIF1<0和SKIPIF1<0為不重合的兩個(gè)平面,給出下列命題:(1)若SKIPIF1<0內(nèi)的兩條相交直線分別平行于SKIPIF1<0內(nèi)的兩條直線,則SKIPIF1<0平行于SKIPIF1<0;(2)若SKIPIF1<0外一條直線SKIPIF1<0與SKIPIF1<0內(nèi)的一條直線平行,則SKIPIF1<0和SKIPIF1<0平行;(3)設(shè)SKIPIF1<0和SKIPIF1<0相交于直線SKIPIF1<0,若SKIPIF1<0內(nèi)有一條直線垂直于SKIPIF1<0,則SKIPIF1<0和SKIPIF1<0垂直;(4)直線SKIPIF1<0與SKIPIF1<0垂直的充分必要條件是SKIPIF1<0與SKIPIF1<0內(nèi)的兩條直線垂直.上面命題中,真命題的序號(hào)(寫出所有真命題的序號(hào))10.(2020·全國(guó)高考真題(理))如圖,已知三棱柱ABC-A1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,M,N分別為BC,B1C1的中點(diǎn),P為AM上一點(diǎn),過B1C1和P的平面交AB于E,交AC于F.(1)證明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)設(shè)O為△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直線B1E與平面A1AMN所成角的正弦值.1.【答案】D【分析】取AD、CD的中點(diǎn)S、T,連接SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得平面SKIPIF1<0平面SKIPIF1<0,再由已知得:點(diǎn)SKIPIF1<0在SKIPIF1<0上,從而結(jié)合圖像即可求出SKIPIF1<0的最大值.【詳解】取AD、CD的中點(diǎn)S、T,連接SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又因SKIPIF1<0所以平面SKIPIF1<0平面SKIPIF1<0,故點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),SKIPIF1<0平面SKIPIF1<0,設(shè)正方體的棱長(zhǎng)為1,因?yàn)镾KIPIF1<0底面SKIPIF1<0,所以SKIPIF1<0即為SKIPIF1<0與底面SKIPIF1<0所成的角為SKIPIF1<0,當(dāng)SKIPIF1<0為SKIPIF1<0的中點(diǎn)時(shí),SKIPIF1<0取最大值,此時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的最大值為SKIPIF1<0.故選:D.2.【答案】A【分析】利用面面平行得到線面平行,即可.【詳解】解:如圖所示,P、Q分別為線段SKIPIF1<0,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,同理SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,若SKIPIF1<0平面SKIPIF1<0,則會(huì)有SKIPIF1<0平面SKIPIF1<0,故點(diǎn)SKIPIF1<0的軌跡為線段SKIPIF1<0,SKIPIF1<0的中點(diǎn)連接而成的線段,故選A.3.【答案】SKIPIF1<0【分析】取SKIPIF1<0中點(diǎn)SKIPIF1<0,在SKIPIF1<0上取點(diǎn)SKIPIF1<0,使SKIPIF1<0,連結(jié)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,可得平面SKIPIF1<0平面SKIPIF1<0,則可得SKIPIF1<0線段SKIPIF1<0,由此可知當(dāng)SKIPIF1<0與SKIPIF1<0的中點(diǎn)SKIPIF1<0重合時(shí),線段SKIPIF1<0長(zhǎng)度取最小值SKIPIF1<0,當(dāng)SKIPIF1<0與點(diǎn)SKIPIF1<0或點(diǎn)SKIPIF1<0重合時(shí),線段SKIPIF1<0長(zhǎng)度取最大值SKIPIF1<0或SKIPIF1<0,然后根據(jù)題中的數(shù)據(jù)進(jìn)行計(jì)算即可【詳解】解:取SKIPIF1<0中點(diǎn)SKIPIF1<0,在SKIPIF1<0上取點(diǎn)SKIPIF1<0,使SKIPIF1<0,連結(jié)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則平面SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0是側(cè)面四邊形SKIPIF1<0內(nèi)一動(dòng)點(diǎn)(含邊界),SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0線段SKIPIF1<0,∴當(dāng)SKIPIF1<0與SKIPIF1<0的中點(diǎn)SKIPIF1<0重合時(shí),線段SKIPIF1<0長(zhǎng)度取最小值SKIPIF1<0,當(dāng)SKIPIF1<0與點(diǎn)SKIPIF1<0或點(diǎn)SKIPIF1<0重合時(shí),線段SKIPIF1<0長(zhǎng)度取最大值SKIPIF1<0或SKIPIF1<0,∵在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且滿足SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴線段SKIPIF1<0長(zhǎng)度的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<04.【答案】①②④【分析】由長(zhǎng)方體的結(jié)構(gòu)特征,可證得平面AB1D1//平面BC1D,即可判斷①;通過相關(guān)計(jì)算可判斷②③④,從而得解.【詳解】連接BD,BC1,B1D1,AB1,如圖:由長(zhǎng)方體的結(jié)構(gòu)特征知,對(duì)角面BDD1B1是矩形,即BD//B1D1,B1D1SKIPIF1<0平面BC1D,BDSKIPIF1<0平面BC1D,于是B1D1//平面BC1D,同理AD1//平面BC1D,而B1D1SKIPIF1<0AD1=D1,B1D1SKIPIF1<0平面AB1D1,AD1SKIPIF1<0平面AB1D1,平面AB1D1//平面BC1D,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故①正確;SKIPIF1<0中,SKIPIF1<0,由余弦定理得SKIPIF1<0,故②正確;SKIPIF1<0中,SKIPIF1<0,故SKIPIF1<0,故③錯(cuò)誤;長(zhǎng)方體SKIPIF1<0外接球半徑為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則該長(zhǎng)方體的外接球的表面積為SKIPIF1<0,故④正確,綜上,正確結(jié)論的序號(hào)是①②④.故答案為:①②④【點(diǎn)睛】結(jié)論點(diǎn)睛:長(zhǎng)方體的體對(duì)角線是該長(zhǎng)方體外接球的直徑.1.【答案】C【分析】根據(jù)SKIPIF1<0在平面SKIPIF1<0內(nèi)判斷①;根據(jù)線面平行的判定定理證明SKIPIF1<0與平面SKIPIF1<0平行,由此判斷②;根據(jù)線面垂直的判定定理證明SKIPIF1<0與平面SKIPIF1<0垂直,由此判斷③;通過假設(shè)結(jié)論成立的方法判斷④.【詳解】因?yàn)镺為AC1與A1C的交點(diǎn),且四邊形SKIPIF1<0為矩形,所以SKIPIF1<0為SKIPIF1<0的中點(diǎn),又因?yàn)镈為AB的中點(diǎn),所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0顯然不成立,故①錯(cuò)誤;因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,故②正確;又因?yàn)镾KIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0,又因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,故③正確;假設(shè)SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,又顯然SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,顯然不成立,所以假設(shè)不成立,故④錯(cuò)誤;故選:C.2.【答案】B【分析】連接AD1,F(xiàn)D1,GF,BC1,證得EF//AD1,利用平面AEFD1逐一分析各選項(xiàng)即可判斷作答.【詳解】正方體SKIPIF1<0中,連接AD1,F(xiàn)D1,GF,BC1,如圖:因點(diǎn)E,F(xiàn)是BC,CC1中點(diǎn),則EF//BC1,而正方體SKIPIF1<0的對(duì)角面ABC1D1是矩形,則AD1//BC1//EF,連GF,因G是棱BB1中點(diǎn),則GF//B1C1//A1D1,且SKIPIF1<0,即四邊形A1GFD1是平行四邊形,A1G//D1F,SKIPIF1<0平面AEF,SKIPIF1<0平面AEF,于是A1G//平面AEF,A正確;因SKIPIF1<0平面ABCD,而SKIPIF1<0平面ABCD,即有SKIPIF1<0AE,若SKIPIF1<0AF,必有SKIPIF1<0平面AEFD1,SKIPIF1<0AD1,與SKIPIF1<0矛盾,B不正確;因EF//AD1,A1G//D1F,則異面直線SKIPIF1<0與SKIPIF1<0所成角是SKIPIF1<0或其補(bǔ)角,作SKIPIF1<0于M,顯然SKIPIF1<0,即四邊形AEFD1是等腰梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,C正確;SKIPIF1<0,平面SKIPIF1<0截正方體所得的截面是等腰梯形AEFD1,等腰梯形AEFD1的面積為SKIPIF1<0,D正確.故選:B3.【答案】C【分析】根據(jù)線線,面面的性質(zhì)判斷A,B是否正確;使用假設(shè)法判斷C,D是否正確.【詳解】解:對(duì)于A:由直四棱柱SKIPIF1<0,SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,又因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,故A正確;對(duì)于B:若四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,而SKIPIF1<0與SKIPIF1<0不平行,即平面SKIPIF1<0與平面SKIPIF1<0不平行,所以平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0不平行,與SKIPIF1<0矛盾,所以四邊形SKIPIF1<0不可能是平行四邊形,故B正確;對(duì)于C:假設(shè)存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為等腰直角三角形,令SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,則SKIPIF1<0,在線段SKIPIF1<0上取一點(diǎn)SKIPIF1<0使得SKIPIF1<0,連接SKIPIF1<0,則四邊形SKIPIF1<0為矩形,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0顯然SKIPIF1<0,若由SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0四邊形SKIPIF1<0為平行四邊SKIPIF1<0,所以SKIPIF1<0,無解,故C錯(cuò)誤;對(duì)于D:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為SKIPIF1<0時(shí),滿足SKIPIF1<0平面SKIPIF1<0,故D正確.故選:C.4.【答案】A【分析】根據(jù)充分條件和必要條件的概念,結(jié)合點(diǎn)線面的位置關(guān)系,即可判斷.【詳解】充分性:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,又因?yàn)閙是平面SKIPIF1<0和SKIPIF1<0之外的直線,所以SKIPIF1<0;必要性:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0與SKIPIF1<0相交或SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0與SKIPIF1<0平行,相交,異面,所以必要性不成立;所以“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:A.5.【答案】C【分析】利用特例排除法,容易否定ABD,利用線面、面面垂直、平行的的關(guān)系可以斷定C正確.【詳解】選項(xiàng)A中,也可能SKIPIF1<0;選項(xiàng)B中,SKIPIF1<0也有可能在SKIPIF1<0內(nèi);選項(xiàng)D中,m與SKIPIF1<0的關(guān)系不確定,故可排除A,B,D.由線面平行和垂直的判定與性質(zhì)可以看出C正確.故選C.6.【答案】D【分析】設(shè)線段SKIPIF1<0的中點(diǎn)為M,平面SKIPIF1<0與SKIPIF1<0交于點(diǎn)G,連接GE,由已知得四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,隨著點(diǎn)E從C向SKIPIF1<0移動(dòng),則點(diǎn)G沿著SKIPIF1<0向下運(yùn)動(dòng),當(dāng)點(diǎn)G仍在線段SKIPIF1<0上時(shí),面SKIPIF1<0截長(zhǎng)方體SKIPIF1<0所得截面始終是平行四邊形,臨界狀態(tài)為點(diǎn)E為SKIPIF1<0的中點(diǎn),由此可得選項(xiàng).【詳解】解:設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)線段SKIPIF1<0的中點(diǎn)為M,平面SKIPIF1<0與SKIPIF1<0交于點(diǎn)G,連接GE,若平面SKIPIF1<0截長(zhǎng)方體SKIPIF1<0所得截面為平行四邊形,即四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,隨著點(diǎn)E從C向SKIPIF1<0移動(dòng),則點(diǎn)G沿著SKIPIF1<0向下運(yùn)動(dòng),當(dāng)點(diǎn)G仍在線段SKIPIF1<0上時(shí),面SKIPIF1<0截長(zhǎng)方體SKIPIF1<0所得截面始終是平行四邊形,則點(diǎn)G從SKIPIF1<0的中點(diǎn)開始運(yùn)動(dòng),此時(shí)點(diǎn)E與SKIPIF1<0重合,直到點(diǎn)G運(yùn)動(dòng)到點(diǎn)D為止,此時(shí)點(diǎn)E為SKIPIF1<0的中點(diǎn),所以臨界狀態(tài)為點(diǎn)E為SKIPIF1<0的中點(diǎn),此時(shí)SKIPIF1<0,所以SKIPIF1<0,故選:D.【點(diǎn)睛】方法點(diǎn)睛:對(duì)于立體幾何中的動(dòng)點(diǎn)問題,常需動(dòng)中覓靜,這里的"靜"是指問題中的不變量或者是不變關(guān)系,動(dòng)中覓靜就是在運(yùn)動(dòng)變化中探索問題中的不變性."靜"只是"動(dòng)"的瞬間,是運(yùn)動(dòng)的一種特殊形式,然而抓住"靜"的瞬間,使一般情形轉(zhuǎn)化為特殊情形,問題便迎刃而解.7.【答案】B【分析】CD中點(diǎn)P,SKIPIF1<0中點(diǎn)Q,連接PQ、PN、QN,根據(jù)面面平行的判定定理,可證平面SKIPIF1<0平面SKIPIF1<0,即M在平面SKIPIF1<0內(nèi),根據(jù)題意,可得點(diǎn)M在線段PQ上,在SKIPIF1<0中,分別求得各個(gè)邊長(zhǎng),根據(jù)余弦定理,求得SKIPIF1<0,根據(jù)三角函數(shù)的定義,即可求得答案.【詳解】取CD中點(diǎn)P,SKIPIF1<0中點(diǎn)Q,連接PQ、PN、QN,如圖所示:因?yàn)镻、N分別為CD、BC中點(diǎn),所以SKIPIF1<0,同理,P、Q分別為CD、SKIPIF1<0中點(diǎn),所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面PQN,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又點(diǎn)SKIPIF1<0在平面SKIPIF1<0內(nèi)運(yùn)動(dòng),所以點(diǎn)M在平面SKIPIF1<0和平面SKIPIF1<0的交線上,即SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以N點(diǎn)到PQ的最小距離SKIPIF1<0.所以線段SKIPIF1<0的最小值為SKIPIF1<0.故選:B【點(diǎn)睛】解題的關(guān)鍵是作出平面SKIPIF1<0平面SKIPIF1<0,在根據(jù)題意,確定點(diǎn)M的位置,再求解,考查面面平行的判定及性質(zhì)定理的應(yīng)用,解三角形等知識(shí),屬中檔題.8.【答案】SKIPIF1<0【分析】先判斷截面的特征→通過平行等比例構(gòu)造線段比→截面面積的表達(dá)式→轉(zhuǎn)化為二次函數(shù)的最值問題.【詳解】設(shè)平面SKIPIF1<0與長(zhǎng)方體底面的距離為SKIPIF1<0,平面SKIPIF1<0與四面體SKIPIF1<0的截面為四邊形SKIPIF1<0,如圖.顯然四邊形SKIPIF1<0為平行四邊形,且平面SKIPIF1<0平面SKIPIF1<0.設(shè)四邊形SKIPIF1<0在長(zhǎng)方體的底面SKIPIF1<0的射影為四邊形SKIPIF1<0,則在SKIPIF1<0中,由SKIPIF1<0知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故四邊形SKIPIF1<0的面積即為四邊形SKIPIF1<0的面積,而四邊形SKIPIF1<0的面積SKIPIF1<0SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵是找四邊形SKIPIF1<0在長(zhǎng)方體的底面SKIPIF1<0的射影為四邊形SKIPIF1<0,并利用面積分割進(jìn)行計(jì)算.9.【答案】SKIPIF1<0【分析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,可得四邊形SKIPIF1<0是平行四邊形,可得SKIPIF1<0,同理可得SKIPIF1<0,可得面面平行,進(jìn)而得出SKIPIF1<0點(diǎn)軌跡為SKIPIF1<0.【詳解】如圖所示,SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0.可得四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,可得SKIPIF1<0平面SKIPIF1<0.同理可得SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0.∵SKIPIF1<0點(diǎn)是正方形SKIPIF1<0內(nèi)的動(dòng)點(diǎn),SKIPIF1<0平面SKIPIF1<0,∴點(diǎn)SKIPIF1<0在線段SKIPIF1<0上.∴SKIPIF1<0點(diǎn)的軌跡長(zhǎng)度為SKIPIF1<0.故答案為:SKIPIF1<0.10.【答案】SKIPIF1<0【分析】先利用平行關(guān)系得到截面與正方體的交點(diǎn)位于靠近SKIPIF1<0的三等分點(diǎn)處,從而得到截面圖像,再利用正方體的棱長(zhǎng)求出截面多邊形的周長(zhǎng)即可.【詳解】如圖:虛線即為截面圖形,SKIPIF1<0分別為各邊的三等分點(diǎn),且面SKIPIF1<0面SKIPIF1<0,設(shè)正方體的棱長(zhǎng)為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,則截面SKIPIF1<0的周長(zhǎng)為:SKIPIF1<0,則該截面多邊形的周長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<0.11.【答案】(Ⅰ)證明見解析;(Ⅱ)SKIPIF1<0.【分析】(Ⅰ)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,即可證明SKIPIF1<0,SKIPIF1<0,從而得到面SKIPIF1<0面SKIPIF1<0,即可得證;(Ⅱ)連接SKIPIF1<0,SKIPIF1<0為二面角SKIPIF1<0的平面角,如圖建立空間直角坐標(biāo)系,利用空間向量法求出線面角的正弦值;【詳解】解:(Ⅰ)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,所以面SKIPIF1<0面SKIPIF1<0,因?yàn)镾KIPIF1<0面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0;(Ⅱ)連接SKIPIF1<0,因?yàn)榈酌鍿KIPIF1<0是邊長(zhǎng)2的等邊三角形,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為二面角SKIPIF1<0的平面角,即SKIPIF1<0,如圖建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,所以SKIPIF1<0故直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0;12.【答案】(Ⅰ)四邊形SKIPIF1<0內(nèi)存在點(diǎn)G,即線段SKIPIF1<0上任意一點(diǎn),使平面SKIPIF1<0平面SKIPIF1<0;(Ⅱ)SKIPIF1<0.【分析】(Ⅰ)取SKIPIF1<0,SKIPIF1<0的中點(diǎn)M,N,可得SKIPIF1<0,從而可得SKIPIF1<0平面SKIPIF1<0,同理可證SKIPIF1<0平面SKIPIF1<0,由面面平行的判定定理可得平面SKIPIF1<0平面SKIPIF1<0,從而可得結(jié)論;(Ⅱ)取SKIPIF1<0的中點(diǎn)O,建立空間直角坐標(biāo)系,利用向量法即可求得SKIPIF1<0與平面SKIPIF1<0所成角SKIPIF1<0的正弦值.【詳解】(Ⅰ)如圖所示,取SKIPIF1<0,SKIPIF1<0的中點(diǎn)M,N,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镋,F(xiàn)分別為SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度金融資產(chǎn)承債式收購(gòu)股權(quán)轉(zhuǎn)讓及資產(chǎn)包交易合同3篇
- 2025年教育機(jī)構(gòu)托管班教師職位聘用合同(全新版)2篇
- 2025年水塘承包漁業(yè)資源養(yǎng)殖與推廣合同3篇
- 2024項(xiàng)目介紹居間合同協(xié)議
- 2024版無錫二手房買賣合同范本
- 2025年可視電話終端項(xiàng)目評(píng)估報(bào)告
- 2025年度新能源儲(chǔ)能設(shè)備質(zhì)押擔(dān)保合同范本3篇
- 2025年度行政救濟(jì)制度法律依據(jù)示范合同5篇
- 年產(chǎn)200萬噸高精度特大規(guī)格鋁及鋁合金板帶箔工程項(xiàng)目可行性研究報(bào)告
- 二零二五年度彩色印刷品版權(quán)保護(hù)合同3篇
- 人教版八年級(jí)下冊(cè)第一單元英語Unit1 單元設(shè)計(jì)
- PEP小學(xué)六年級(jí)英語上冊(cè)選詞填空專題訓(xùn)練
- 古建筑修繕項(xiàng)目施工規(guī)程(試行)
- GA 844-2018防砸透明材料
- 化學(xué)元素周期表記憶與讀音 元素周期表口訣順口溜
- 非人力資源經(jīng)理的人力資源管理培訓(xùn)(新版)課件
- MSDS物質(zhì)安全技術(shù)資料-201膠水
- 鉬氧化物還原過程中的物相轉(zhuǎn)變規(guī)律及其動(dòng)力學(xué)機(jī)理研究
- (完整word)2019注冊(cè)消防工程師繼續(xù)教育三科試習(xí)題及答案
- 《調(diào)試件現(xiàn)場(chǎng)管理制度》
- 社區(qū)治理現(xiàn)代化課件
評(píng)論
0/150
提交評(píng)論