湖南省張家界五道水鎮(zhèn)中學2024屆中考數(shù)學押題試卷含解析_第1頁
湖南省張家界五道水鎮(zhèn)中學2024屆中考數(shù)學押題試卷含解析_第2頁
湖南省張家界五道水鎮(zhèn)中學2024屆中考數(shù)學押題試卷含解析_第3頁
湖南省張家界五道水鎮(zhèn)中學2024屆中考數(shù)學押題試卷含解析_第4頁
湖南省張家界五道水鎮(zhèn)中學2024屆中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省張家界五道水鎮(zhèn)中學2024學年中考數(shù)學押題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.2.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.3.為了紀念物理學家費米,物理學界以費米(飛米)作為長度單位.已知1飛米等于0.000000000000001米,把0.000000000000001這個數(shù)用科學記數(shù)法表示為()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣124.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數(shù)應該分別為()A.1,2 B.1,3C.4,2 D.4,35.將一次函數(shù)的圖象向下平移2個單位后,當時,的取值范圍是()A. B. C. D.6.下列關于x的方程一定有實數(shù)解的是()A. B.C. D.7.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.8.如圖所示的幾何體的主視圖正確的是()A. B. C. D.9.拋物線y=mx2﹣8x﹣8和x軸有交點,則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠010.在平面直角坐標系xOy中,將點N(–1,–2)繞點O旋轉180°,得到的對應點的坐標是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)11.一組數(shù)據(jù):1、2、2、3,若添加一個數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差12.如圖,已知直線AD是⊙O的切線,點A為切點,OD交⊙O于點B,點C在⊙O上,且∠ODA=36°,則∠ACB的度數(shù)為()A.54°B.36°C.30°D.27°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____________.14.在中,若,則的度數(shù)是______.15.在平面直角坐標系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.16.如圖,直線交于點,,與軸負半軸,軸正半軸分別交于點,,,的延長線相交于點,則的值是_________.17.如圖AB是直徑,C、D、E為圓周上的點,則______.18.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.(1)求A,B兩點間的距離(結果精確到0.1km).(2)當運載火箭繼續(xù)直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.1.)20.(6分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.21.(6分)請根據(jù)圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)22.(8分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.23.(8分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.24.(10分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進而得出:DC+AD=BD.(2)探究證明將直線MN繞點A順時針旋轉到圖2的位置寫出此時線段DC,AD,BD之間的數(shù)量關系,并證明(3)拓展延伸在直線MN繞點A旋轉的過程中,當△ABD面積取得最大值時,若CD長為1,請直接寫B(tài)D的長.25.(10分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.(1)求證:DF是BF和CF的比例中項;(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.26.(12分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關于x的函數(shù)關系式;(3)連結OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).27.(12分)(1)計算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡,再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

由∠A是公共角,利用有兩角對應相等的三角形相似,即可得A與B正確;又由兩組對應邊的比相等且夾角對應相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應用.【題目詳解】∵∠A是公共角,∴當∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應相等的三角形相似),故A與B正確,不符合題意要求;當AB:AD=AC:AB時,△ADB∽△ABC(兩組對應邊的比相等且夾角對應相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.2、A【解題分析】試題分析:主視圖是從正面看到的圖形,只有選項A符合要求,故選A.考點:簡單幾何體的三視圖.3、A【解題分析】

根據(jù)科學記數(shù)法的表示方法解答.【題目詳解】解:把這個數(shù)用科學記數(shù)法表示為.故選:.【題目點撥】此題重點考查學生對科學記數(shù)法的應用,熟練掌握小于0的數(shù)用科學記數(shù)法表示法是解題的關鍵.4、A【解題分析】試題分析:通過猜想得出數(shù)據(jù),再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結論.解題關鍵是對號入座不要找錯對應關系.5、C【解題分析】

直接利用一次函數(shù)平移規(guī)律,即k不變,進而利用一次函數(shù)圖象的性質(zhì)得出答案.【題目詳解】將一次函數(shù)向下平移2個單位后,得:,當時,則:,解得:,當時,,故選C.【題目點撥】本題主要考查了一次函數(shù)平移,解一元一次不等式,正確利用一次函數(shù)圖象上點的坐標性質(zhì)得出是解題關鍵.6、A【解題分析】

根據(jù)一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【題目詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個不相等的實數(shù)根,符合題意;

B.a(chǎn)x=3中當a=0時,方程無解,不符合題意;

C.由可解得不等式組無解,不符合題意;

D.有增根x=1,此方程無解,不符合題意;

故選A.【題目點撥】本題主要考查方程的解,解題的關鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.7、D【解題分析】

根據(jù)正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數(shù)互為相反數(shù)可得出x的值.【題目詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【題目點撥】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.8、D【解題分析】

主視圖是從前向后看,即可得圖像.【題目詳解】主視圖是一個矩形和一個三角形構成.故選D.9、C【解題分析】

根據(jù)二次函數(shù)的定義及拋物線與x軸有交點,即可得出關于m的一元一次不等式組,解之即可得出m的取值范圍.【題目詳解】解:∵拋物線和軸有交點,,解得:且.故選.【題目點撥】本題考查了拋物線與x軸的交點、二次函數(shù)的定義以及解一元一次不等式組,牢記“當時,拋物線與x軸有交點是解題的關鍵.10、A【解題分析】

根據(jù)點N(–1,–2)繞點O旋轉180°,所得到的對應點與點N關于原點中心對稱求解即可.【題目詳解】∵將點N(–1,–2)繞點O旋轉180°,∴得到的對應點與點N關于原點中心對稱,∵點N(–1,–2),∴得到的對應點的坐標是(1,2).故選A.【題目點撥】本題考查了旋轉的性質(zhì),由旋轉的性質(zhì)得到的對應點與點N關于原點中心對稱是解答本題的關鍵.11、D【解題分析】

解:A.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.12、D【解題分析】解:∵AD為圓O的切線,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD與∠ACB都對,∴∠ACB=∠AOD=27°.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣24【解題分析】分析:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點C的坐標為,這樣由點C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點C的坐標為,∵點C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設CF=4x,結合已知條件把OF和OA用含x的式子表達出來;(2)由四邊形AOCB是菱形,點D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.14、【解題分析】

先根據(jù)非負數(shù)的性質(zhì)求出,,再由特殊角的三角函數(shù)值求出與的值,根據(jù)三角形內(nèi)角和定理即可得出結論.【題目詳解】在中,,,,,,,故答案為:.【題目點撥】本題考查了非負數(shù)的性質(zhì)以及特殊角的三角函數(shù)值,熟練掌握特殊角的三角函數(shù)值是解題的關鍵.15、【解題分析】

可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【題目詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【題目點撥】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.16、【解題分析】

連接,根據(jù)可得,并且根據(jù)圓的半徑相等可得△OAD、△OBE都是等腰三角形,由三角形的內(nèi)角和,可得∠C=45°,則有是等腰直角三角形,可得即可求求解.【題目詳解】解:如圖示,連接,∵,∴,∵,,∴,,∴,∴,∵是直徑,∴,∴是等腰直角三角形,∴.【題目點撥】本題考查圓的性質(zhì)和直角三角形的性質(zhì),能夠根據(jù)圓性質(zhì)得出是等腰直角三角形是解題的關鍵.17、90°【解題分析】

連接OE,根據(jù)圓周角定理即可求出答案.【題目詳解】解:連接OE,

根據(jù)圓周角定理可知:

∠C=∠AOE,∠D=∠BOE,

則∠C+∠D=(∠AOE+∠BOE)=90°,

故答案為:90°.【題目點撥】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.18、1【解題分析】

根據(jù)相似三角形的對應邊的比相等列出比例式,計算即可.【題目詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【題目點撥】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對應邊的比相等是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1.7km;(2)8.9km;【解題分析】

(1)根據(jù)銳角三角函數(shù)可以表示出OA和OB的長,從而可以求得AB的長;(2)根據(jù)銳角三角函數(shù)可以表示出CD,從而可以求得此時雷達站C和運載火箭D兩點間的距離.【題目詳解】解:(1)由題意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,∴AO=OC?tan34°,BO=OC?tan45°,∴AB=OB﹣OA=OC?tan45°﹣OC?tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,即A,B兩點間的距離是1.7km;(2)由已知可得,∠DOC=90°,OC=5km,∠DCO=56°,∴cos∠DCO=即∵sin34°=cos56°,∴解得,CD≈8.9答:此時雷達站C和運載火箭D兩點間的距離是8.9km.【題目點撥】本題考查解直角三角形的應用﹣仰角俯角問題,解答本題的關鍵是明確題意,利用數(shù)形結合的思想和銳角三角函數(shù)解答.20、(1)證明見解析;(2)1.【解題分析】試題分析:(1)根據(jù)垂直的定義可得∠CEB=90°,然后根據(jù)角平分線的性質(zhì)和等腰三角形的性質(zhì),判斷出∠1=∠D,從而根據(jù)平行線的判定得到CE∥BD,根據(jù)平行線的性質(zhì)得∠DBA=∠CEB,由此可根據(jù)切線的判定得證結果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙O直徑,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考點:切線的判定,相似三角形,勾股定理21、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解題分析】

(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【題目詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數(shù),∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當n>25時,40﹣1.6n<0,即160+0.64n<120+8n,∴選擇甲商場購買更合算.【題目點撥】此題主要考查不等式的應用,解題的關鍵是根據(jù)題意找到等量關系與不等關系進行列式求解.22、△A′DE是等腰三角形;證明過程見解析.【解題分析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質(zhì);2.全等三角形的判定;3.平移的性質(zhì).23、(1)見解析;(2).【解題分析】

(1)直接利用直角三角形的性質(zhì)得出,再利用DE∥BC,得出∠2=∠3,進而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的長,進而得出EC的長.【題目詳解】(1)證明:∵AD⊥DB,點E為AB的中點,∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【題目點撥】此題主要考查了直角三角形斜邊上的中線與斜邊的關系,正確得出DB,DE的長是解題關鍵.24、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解題分析】

(1)根據(jù)全等三角形的性質(zhì)求出DC,AD,BD之間的數(shù)量關系(2)過點B作BE⊥BD,交MN于點E.AD交BC于O,證明,得到,,根據(jù)為等腰直角三角形,得到,再根據(jù),即可解出答案.(3)根據(jù)A、B、C、D四點共圓,得到當點D在線段AB的垂直平分線上且在AB的右側時,△ABD的面積最大.在DA上截取一點H,使得CD=DH=1,則易證,由即可得出答案.【題目詳解】解:(1)如圖1中,由題意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案為.(2).證明:如圖,過點B作BE⊥BD,交MN于點E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴為等腰直角三角形,.∵,∴.(3)如圖3中,易知A、B、C、D四點共圓,當點D在線段AB的垂直平分線上且在AB的右側時,△ABD的面積最大.此時DG⊥AB,DB=DA,在DA上截取一點H,使得CD=DH=1,則易證,∴.【題目點撥】本題主要考查全等三角形的性質(zhì),等腰直角三角形的性質(zhì)以及圖形的應用,正確作輔助線和熟悉圖形特性是解題的關鍵.25、證明見解析【解題分析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論