2024屆廣西梧州市蒙山縣中考數(shù)學(xué)考前最后一卷含解析_第1頁
2024屆廣西梧州市蒙山縣中考數(shù)學(xué)考前最后一卷含解析_第2頁
2024屆廣西梧州市蒙山縣中考數(shù)學(xué)考前最后一卷含解析_第3頁
2024屆廣西梧州市蒙山縣中考數(shù)學(xué)考前最后一卷含解析_第4頁
2024屆廣西梧州市蒙山縣中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年廣西梧州市蒙山縣中考數(shù)學(xué)考前最后一卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.42.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為3.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.4.工信部發(fā)布《中國數(shù)字經(jīng)濟(jì)發(fā)展與就業(yè)白皮書(2018)》)顯示,2017年湖北數(shù)字經(jīng)濟(jì)總量1.21萬億元,列全國第七位、中部第一位.“1.21萬”用科學(xué)記數(shù)法表示為()A.1.21×103B.12.1×103C.1.21×104D.0.121×1055.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°6.據(jù)中國電子商務(wù)研究中心發(fā)布年度中國共享經(jīng)濟(jì)發(fā)展報告顯示,截止2017年12月,共有190家共享經(jīng)濟(jì)平臺獲得億元投資,數(shù)據(jù)億元用科學(xué)記數(shù)法可表示為A.元 B.元 C.元 D.元7.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機(jī)從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機(jī)摸出一球.兩次都摸到紅球的概率是()A. B. C. D.8.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點(diǎn),將△ABC沿DE折疊,使點(diǎn)B落在AC邊上點(diǎn)F處,并且DF∥BC,若CF=3,BC=9,則AB的長是()A. B.15 C. D.99.在下列函數(shù)中,其圖象與x軸沒有交點(diǎn)的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=10.有兩組數(shù)據(jù),A組數(shù)據(jù)為2、3、4、5、6;B組數(shù)據(jù)為1、7、3、0、9,這兩組數(shù)據(jù)的()A.中位數(shù)相等B.平均數(shù)不同C.A組數(shù)據(jù)方差更大D.B組數(shù)據(jù)方差更大二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.12.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機(jī)取出一個白球的概率是2313.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,1),以點(diǎn)O為旋轉(zhuǎn)中心,將點(diǎn)A逆時針旋轉(zhuǎn)到點(diǎn)B的位置,則的長為_____.14.在3×3方格上做填字游戲,要求每行每列及對角線上三個方格中的數(shù)字和都相等,若填在圖中的數(shù)字如圖所示,則x+y的值是_____.2x32y﹣34y15.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點(diǎn)D為AB的中點(diǎn),將△ACD繞著點(diǎn)C逆時針旋轉(zhuǎn),使點(diǎn)A落在CB的延長線A′處,點(diǎn)D落在點(diǎn)D′處,則D′B長為_____.16.計算(-2)×3+(-3)=_______________.三、解答題(共8題,共72分)17.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=

(x>0)的圖象交于A(2,﹣1),B(,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.18.(8分)如圖,在△ABC中,D為BC邊上一點(diǎn),AC=DC,E為AB邊的中點(diǎn),(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點(diǎn)F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.19.(8分)學(xué)校決定從甲、乙兩名同學(xué)中選拔一人參加“誦讀經(jīng)典”大賽,在相同的測試條件下,甲、乙兩人5次測試成績(單位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.請回答下列問題:甲成績的中位數(shù)是______,乙成績的眾數(shù)是______;經(jīng)計算知,.請你求出甲的方差,并從平均數(shù)和方差的角度推薦參加比賽的合適人選.20.(8分)已知平行四邊形.尺規(guī)作圖:作的平分線交直線于點(diǎn),交延長線于點(diǎn)(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.21.(8分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點(diǎn),且向右平移1個單位長度后,剛好過點(diǎn)(3,1).①求此拋物線的解析式;②以y軸上的點(diǎn)P(1,n)為中心,作該拋物線關(guān)于點(diǎn)P對稱的拋物線y',若這兩條拋物線有公共點(diǎn),求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當(dāng)x=c時,y=1;當(dāng)1<x<c時,y>1.試比較ac與1的大小,并說明理由.22.(10分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動,速度為2cm/s;同時點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向點(diǎn)C勻速運(yùn)動,速度為lcm/s;連接PQ,設(shè)運(yùn)動的時間為t秒(0<t<5),解答下列問題:(1)當(dāng)為t何值時,PQ∥BC;(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.23.(12分)如圖,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當(dāng)AE為何值時,△AEF的面積最大?24.如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運(yùn)動,設(shè)運(yùn)動時間為t(秒),將線段CE繞點(diǎn)C順時針旋轉(zhuǎn)一個角α(α=∠BCD),得到對應(yīng)線段CF.(1)求證:BE=DF;(2)當(dāng)t=秒時,DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時,△EPQ是直角三角形?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

①根據(jù)作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點(diǎn)D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結(jié)論是:①②③④,,共有4個.故選D.2、B【解題分析】

配方法的一般步驟:(1)把常數(shù)項(xiàng)移到等號的右邊;(2)把二次項(xiàng)的系數(shù)化為1;(3)等式兩邊同時加上一次項(xiàng)系數(shù)一半的平方.【題目詳解】解:、,,,,故選項(xiàng)正確.、,,,,故選項(xiàng)錯誤.、,,,,,故選項(xiàng)正確.、,,,,.故選項(xiàng)正確.故選:.【題目點(diǎn)撥】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確應(yīng)用.選擇用配方法解一元二次方程時,最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).3、D【解題分析】

根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【題目詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【題目點(diǎn)撥】本題考查了方差的知識,說明了當(dāng)數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當(dāng)數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.4、C【解題分析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).詳解:1.21萬=1.21×104,故選:C.點(diǎn)睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、B【解題分析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點(diǎn)睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.6、C【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【題目詳解】億=115956000000,所以億用科學(xué)記數(shù)法表示為1.15956×1011,故選C.【題目點(diǎn)撥】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、A【解題分析】

列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【題目詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.8、C【解題分析】

由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設(shè)EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EF與CE的長,由FD與BC平行,得到一對內(nèi)錯角相等,等量代換得到一對同位角相等,進(jìn)而確定出EF與AB平行,由平行得比例,即可求出AB的長.【題目詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設(shè)EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【題目點(diǎn)撥】此題考查了翻折變換(折疊問題),涉及的知識有:勾股定理,平行線的判定與性質(zhì),平行線分線段成比例,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.9、D【解題分析】

依據(jù)一次函數(shù)的圖象,二次函數(shù)的圖象以及反比例函數(shù)的圖象進(jìn)行判斷即可.【題目詳解】A.正比例函數(shù)y=2x與x軸交于(0,0),不合題意;B.一次函數(shù)y=-3x+1與x軸交于(,0),不合題意;C.二次函數(shù)y=x2與x軸交于(0,0),不合題意;D.反比例函數(shù)y=與x軸沒有交點(diǎn),符合題意;故選D.10、D【解題分析】

分別求出兩組數(shù)據(jù)的中位數(shù)、平均數(shù)、方差,比較即可得出答案.【題目詳解】A組數(shù)據(jù)的中位數(shù)是:4,平均數(shù)是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數(shù)據(jù)的中位數(shù)是:3,平均數(shù)是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數(shù)據(jù)的中位數(shù)不相等,平均數(shù)相等,B組方差更大.故選D.【題目點(diǎn)撥】本題考查了中位數(shù)、平均數(shù)、方差的計算,熟練掌握中位數(shù)、平均數(shù)、方差的計算方法是解答本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、5【解題分析】

作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.【題目詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設(shè)CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【題目點(diǎn)撥】本題考查了等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關(guān)鍵,并利用方程的思想解決問題.12、1.【解題分析】

先根據(jù)概率公式得到2+x5+x=2【題目詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【題目點(diǎn)撥】本題考查了概率公式:隨機(jī)事件A的概率PA=事件13、.【解題分析】

由點(diǎn)A(1,1),可得OA的長,點(diǎn)A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長公式計算即可.【題目詳解】∵A(1,1),∴OA=,點(diǎn)A在第一象限的角平分線上,∵以點(diǎn)O為旋轉(zhuǎn)中心,將點(diǎn)A逆時針旋轉(zhuǎn)到點(diǎn)B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【題目點(diǎn)撥】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),弧長公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.14、0【解題分析】

根據(jù)題意列出方程組,求出方程組的解即可得到結(jié)果.【題目詳解】解:根據(jù)題意得:,即,解得:,則x+y=﹣1+1=0,故答案為0【題目點(diǎn)撥】此題考查了解二元一次方程組,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.15、.【解題分析】

試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點(diǎn)D為AB的中點(diǎn),∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點(diǎn)C逆時針旋轉(zhuǎn),使點(diǎn)A落在CB的延長線A′處,點(diǎn)D落在點(diǎn)D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點(diǎn):旋轉(zhuǎn)的性質(zhì).16、-9【解題分析】

根據(jù)有理數(shù)的計算即可求解.【題目詳解】(-2)×3+(-3)=-6-3=-9【題目點(diǎn)撥】此題主要考查有理數(shù)的混合運(yùn)算,解題的關(guān)鍵是熟知有理數(shù)的運(yùn)算法則.三、解答題(共8題,共72分)17、(1)y=2x﹣5,;(2).【解題分析】

試題分析:(1)把A坐標(biāo)代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標(biāo)代入求出n的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;(2)用矩形面積減去周圍三個小三角形的面積,即可求出三角形ABC面積.試題解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式為,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A與B坐標(biāo)代入y=kx+b中得:,解得:k=2,b=﹣5,則一次函數(shù)解析式為y=2x﹣5;(2)如圖,S△ABC=考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;一次函數(shù)及其應(yīng)用;反比例函數(shù)及其應(yīng)用.18、(1)見解析;(1)1【解題分析】

(1)根據(jù)角平分線的作圖可得;

(1)由等腰三角形的三線合一,結(jié)合E為AB邊的中點(diǎn)證EF為△ABD的中位線可得.【題目詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點(diǎn),∵E是AB的中點(diǎn),∴EF為△ABD的中位線,∴EF=BD=1.【題目點(diǎn)撥】本題主要考查作圖-基本作圖和等腰三角形的性質(zhì)、中位線定理,熟練掌握等腰三角形的性質(zhì)、中位線定理是解題的關(guān)鍵.19、(1)83,81;(2),推薦甲去參加比賽.【解題分析】

(1)根據(jù)中位數(shù)和眾數(shù)分別求解可得;(2)先計算出甲的平均數(shù)和方差,再根據(jù)方差的意義判別即可得.【題目詳解】(1)甲成績的中位數(shù)是83分,乙成績的眾數(shù)是81分,故答案為:83分、81分;(2),∴.∵,,∴推薦甲去參加比賽.【題目點(diǎn)撥】此題主要考查了方差、平均數(shù)、眾數(shù)、中位數(shù)等統(tǒng)計量,其中方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.20、(1)見解析;(2)見解析.【解題分析】試題分析:(1)作∠BAD的平分線交直線BC于點(diǎn)E,交DC延長線于點(diǎn)F即可;(2)先根據(jù)平行四邊形的性質(zhì)得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據(jù)此可得出結(jié)論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點(diǎn):作圖—基本作圖;平行四邊形的性質(zhì).21、(1)①;②n≤1;(2)ac≤1,見解析.【解題分析】

(1)①△=1求解b=1,將點(diǎn)(3,1)代入平移后解析式,即可;②頂點(diǎn)為(1,)關(guān)于P(1,n)對稱點(diǎn)的坐標(biāo)是(﹣1,2n﹣),關(guān)于點(diǎn)P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n,聯(lián)立方程組即可求n的范圍;(2)將點(diǎn)(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,當(dāng)1<x<c時,y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【題目詳解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的拋物線y=a(x﹣1)2﹣b(x﹣1)過點(diǎn)(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原拋物線:y=﹣x2+x,②其頂點(diǎn)為(1,)關(guān)于P(1,n)對稱點(diǎn)的坐標(biāo)是(﹣1,2n﹣),∴關(guān)于點(diǎn)P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由題知:a>1,將此拋物線y=ax2﹣bx向上平移c個單位(c>1),其解析式為:y=ax2﹣bx+c過點(diǎn)(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且當(dāng)x=1時,y=c,對稱軸:x=,拋物線開口向上,畫草圖如右所示.由題知,當(dāng)1<x<c時,y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;【題目點(diǎn)撥】本題考查二次函數(shù)的圖象及性質(zhì);掌握二次函數(shù)圖象平移時改變位置,而a的值不變是解題的關(guān)鍵.22、(1)當(dāng)t=時,PQ∥BC;(2)﹣(t﹣)2+,當(dāng)t=時,y有最大值為;(3)存在,當(dāng)t=時,四邊形PQP′C為菱形【解題分析】

(1)只要證明△APQ∽△ABC,可得=,構(gòu)建方程即可解決問題;(2)過點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質(zhì)構(gòu)建二次函數(shù)即可解決問題;

(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構(gòu)建方程即可解決問題;【題目詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當(dāng)t=時,PQ∥BC.(2)過點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當(dāng)t=時,y有最大值為.(3)存在.理由:連接PP′,交AC于點(diǎn)O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當(dāng)t=時,四邊形PQP′C為菱形.【題目點(diǎn)撥】本題考查四邊形綜合題、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,學(xué)會理由參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.23、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解題分析】

(1)根據(jù)正方形的性質(zhì),可得EF=CE,再根據(jù)∠CEF=∠90°,進(jìn)而可得∠FEH=∠DCE,結(jié)合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質(zhì)可得FH=ED;(2)設(shè)AE=a,用含a的函數(shù)表示△AEF的面積,再利用函數(shù)的最值求面積最大值即可.【題目詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論