2024屆湖南省邵陽市第十一中學中考數(shù)學模試卷含解析_第1頁
2024屆湖南省邵陽市第十一中學中考數(shù)學模試卷含解析_第2頁
2024屆湖南省邵陽市第十一中學中考數(shù)學模試卷含解析_第3頁
2024屆湖南省邵陽市第十一中學中考數(shù)學模試卷含解析_第4頁
2024屆湖南省邵陽市第十一中學中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖南省邵陽市第十一中學中考數(shù)學模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.2.對于下列調(diào)查:①對從某國進口的香蕉進行檢驗檢疫;②審查某教科書稿;③中央電視臺“雞年春晚”收視率.其中適合抽樣調(diào)查的是()A.①②B.①③C.②③D.①②③3.計算﹣8+3的結(jié)果是()A.﹣11 B.﹣5 C.5 D.114.如圖,在⊙O中,點P是弦AB的中點,CD是過點P的直徑,則下列結(jié)論:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正確的個數(shù)是()A.4 B.1 C.2 D.35.下列因式分解正確的是A. B.C. D.6.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8337.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.8.若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠19.若※是新規(guī)定的某種運算符號,設(shè)a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-210.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣111.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷12.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側(cè)面積為()A. B.π C.50 D.50π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.今年,某縣境內(nèi)跨湖高速進入施工高峰期,交警隊為提醒出行車輛,在一些主要路口設(shè)立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側(cè)面C點測得警示牌頂端點A和底端B點的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.14.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.15.如圖,拋物線交軸于,兩點,交軸于點,點關(guān)于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.16.已知式子有意義,則x的取值范圍是_____17.分解因式:_________.18.已知平面直角坐標系中的點A(2,﹣4)與點B關(guān)于原點中心對稱,則點B的坐標為_____三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)藝術(shù)節(jié)期間,學校向?qū)W生征集書畫作品,楊老師從全校36個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進行了統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)相關(guān)信息,回答下列問題:(1)請你將條形統(tǒng)計圖補充完整;并估計全校共征集了_____件作品;(2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學生恰好是一男一女的概率.20.(6分)為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀念品的出廠價為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分數(shù)據(jù)如表:天數(shù)(x)13610每件成本p(元)7.58.51012任務(wù)完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?任務(wù)完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?21.(6分)當x取哪些整數(shù)值時,不等式與4﹣7x<﹣3都成立?22.(8分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.(1)求證:DE是⊙O的切線;(2)若AE:EB=1:2,BC=6,求⊙O的半徑.23.(8分)如圖,在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.求AP,BP的長(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);甲、乙兩船分別從A,B兩港口同時出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時?24.(10分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數(shù)學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)25.(10分)如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數(shù).小明發(fā)現(xiàn)OE平分∠BOC,請你通過計算說明道理.26.(12分)徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號”高鐵A與“復(fù)興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?27.(12分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】

設(shè)AE=x,則AB=2x,由矩形的性質(zhì)得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結(jié)果.【題目詳解】設(shè)AE=x,

∵四邊形ABCD是矩形,

∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【題目點撥】本題考查了矩形的性質(zhì)、等腰直角三角形的判定與性質(zhì),勾股定理;熟練掌握矩形的性質(zhì)和等腰直角三角形的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.2、B【解題分析】

根據(jù)普查得到的調(diào)查結(jié)果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【題目詳解】①對從某國進口的香蕉進行檢驗檢疫適合抽樣調(diào)查;②審查某教科書稿適合全面調(diào)查;③中央電視臺“雞年春晚”收視率適合抽樣調(diào)查.故選B.【題目點撥】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.3、B【解題分析】

絕對值不等的異號加法,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值.互為相反數(shù)的兩個數(shù)相加得1.依此即可求解.【題目詳解】解:?8+3=?2.故選B.【題目點撥】考查了有理數(shù)的加法,在進行有理數(shù)加法運算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有1.從而確定用那一條法則.在應(yīng)用過程中,要牢記“先符號,后絕對值”.4、D【解題分析】

根據(jù)垂徑定理,圓周角的性質(zhì)定理即可作出判斷.【題目詳解】∵P是弦AB的中點,CD是過點P的直徑.∴AB⊥CD,弧AD=弧BD,故①正確,③正確;∠AOB=2∠AOD=4∠ACD,故②正確.P是OD上的任意一點,因而④不一定正確.故正確的是:①②③.故選:D.【題目點撥】本題主要考查了垂徑定理,圓周角定理,正確理解定理是關(guān)鍵.平分弦(不是直徑)的直徑垂直與這條弦,并且平分這條弦所對的兩段?。煌瑘A或等圓中,圓周角等于它所對的弧上的圓心角的一半.5、D【解題分析】

直接利用提取公因式法以及公式法分解因式,進而判斷即可.【題目詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【題目點撥】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.6、C【解題分析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.7、C【解題分析】

作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【題目詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【題目點撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).8、C【解題分析】

根據(jù)題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關(guān)鍵是熟練掌握:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.9、C【解題分析】解:由題意得:,∴,∴x=±1.故選C.10、A【解題分析】

根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【題目詳解】原式=1+1=2故答案為:A.【題目點撥】本題考查的知識點是絕對值和數(shù)的0次冪,解題關(guān)鍵是熟記數(shù)的0次冪為1.11、B【解題分析】

試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數(shù)根.故選B.考點:根的判別式.12、A【解題分析】

根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.【題目詳解】解:圓錐的側(cè)面積=?5?5=.故選A.【題目點撥】本題考查圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m【解題分析】

由特殊角的正切值即可得出線段CD的長度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長度,再利用線段間的關(guān)系即可得出結(jié)論.【題目詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【題目點撥】解直角三角形的應(yīng)用-仰角俯角問題.14、120°【解題分析】

設(shè)扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【題目詳解】設(shè)扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【題目點撥】本題考查扇形的面積的計算,弧長公式等知識,解題的關(guān)鍵是掌握基本知識.15、【解題分析】

根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4)、作點E關(guān)于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.【題目詳解】如圖,在y=﹣x2+2x+3中,當x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關(guān)于對稱軸的對稱點E的坐標為(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4),作點E關(guān)于x軸的對稱點E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【題目點撥】本題主要考查拋物線的性質(zhì)以及兩點間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.16、x≤1且x≠﹣1.【解題分析】根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.17、【解題分析】先提取公因式b,再利用完全平方公式進行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)18、(﹣2,4)【解題分析】

根據(jù)點P(x,y)關(guān)于原點對稱的點為(-x,-y)即可得解.【題目詳解】解:∵點A(2,-4)與點B關(guān)于原點中心對稱,

∴點B的坐標為:(-2,4).

故答案為:(-2,4).【題目點撥】此題主要考查了關(guān)于原點對稱點的性質(zhì),正確掌握橫縱坐標的關(guān)系是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)圖形見解析,216件;(2)【解題分析】

(1)由B班級的作品數(shù)量及其占總數(shù)量的比例可得4個班作品總數(shù),再求得D班級的數(shù)量,可補全條形圖,再用36乘四個班的平均數(shù)即估計全校的作品數(shù);

(2)列表得出所有等可能結(jié)果,從中找到一男、一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【題目詳解】(1)4個班作品總數(shù)為:件,所以D班級作品數(shù)量為:36-6-12-10=8;∴估計全校共征集作品×36=324件.

條形圖如圖所示,

(2)男生有3名,分別記為A1,A2,A3,女生記為B,

列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12種等可能情況,其中選取的兩名學生恰好是一男一女的有6種.

所以選取的兩名學生恰好是一男一女的概率為.【題目點撥】考查了列表法或樹狀圖法求概率以及扇形與條形統(tǒng)計圖的知識.注意掌握扇形統(tǒng)計圖與條形統(tǒng)計圖的對應(yīng)關(guān)系.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)W=;(2)李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)李師傅共可獲得160元獎金.【解題分析】

(1)根據(jù)題意和表格中的數(shù)據(jù)可以求得p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:(2)根據(jù)題意和題目中的函數(shù)表達式可以解答本題;(3)根據(jù)(2)中的結(jié)果和不等式的性質(zhì)可以解答本題.【題目詳解】(1)設(shè)p與x之間的函數(shù)關(guān)系式為p=kx+b,則有,解得,,即p與x的函數(shù)關(guān)系式為p=0.5x+7(1≤x≤15,x為整數(shù)),當1≤x<10時,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,當10≤x≤15時,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)當1≤x<10時,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴當x=8時,W取得最大值,此時W=324,當10≤x≤15時,W=﹣20x+520,∴當x=10時,W取得最大值,此時W=320,∵324>320,∴李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)當1≤x<10時,令﹣x2+16x+260=299,得x1=3,x2=13,當W>299時,3<x<13,∵1≤x<10,∴3<x<10,當10≤x≤15時,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李師傅獲得獎金的的天數(shù)是第4天到第11天,李師傅共獲得獎金為:20×(11﹣3)=160(元),即李師傅共可獲得160元獎金.【題目點撥】本題考查了一次函數(shù)的應(yīng)用,二次函數(shù)的應(yīng)用等,明確題意,找出各個量之間的關(guān)系,確立函數(shù)解析式,利用函數(shù)的性質(zhì)進行解答是關(guān)鍵.21、2,1【解題分析】

根據(jù)題意得出不等式組,解不等式組求得其解集即可.【題目詳解】根據(jù)題意得,解不等式①,得:x≤1,解不等式②,得:x>1,則不等式組的解集為1<x≤1,∴x可取的整數(shù)值是2,1.【題目點撥】本題考查了解不等式組的能力,根據(jù)題意得出不等式組是解題的關(guān)鍵.22、(1)證明見解析;(1)32【解題分析】試題分析:(1)求出∠OED=∠BCA=90°,根據(jù)切線的判定即可得出結(jié)論;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.試題解析:(1)證明:連接OE、EC.∵AC是⊙O的直徑,∴∠AEC=∠BEC=90°.∵D為BC的中點,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切線;(1)由(1)知:∠BEC=90°.在Rt△BEC與Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE?BA.∵AE:EB=1:1,設(shè)AE=x,則BE=1x,BA=3x.∵BC=6,∴61=1x?3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=點睛:本題考查了切線的判定和相似三角形的性質(zhì)和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此題的關(guān)鍵.23、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/時,乙船的速度是20海里/時【解題分析】

(1)過點P作PE⊥AB于點E,則有PE=30海里,由題意,可知∠PAB=30°,∠PBA=45°,從而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的長;(2)設(shè)乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,根據(jù)甲船比乙船晚到小島24分鐘列出分式方程,求解后進行檢驗即可得.【題目詳解】(1)如圖,過點P作PE⊥MN,垂足為E,由題意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP==30≈42海里,故AP=60海里,BP=42(海里);(2)設(shè)乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,根據(jù)題意,得,解得x=20,經(jīng)檢驗,x=20是原方程的解,甲船的速度為1.2x=1.2×20=24(海里/時).,答:甲船的速度是24海里/時,乙船的速度是20海里/時.【題目點撥】本題考查了勾股定理的應(yīng)用,分式方程的應(yīng)用,含30度角的直角三角形的性質(zhì),等腰直角三角形的判定與性質(zhì),熟練掌握各相關(guān)知識是解題的關(guān)鍵.24、觀景亭D到南濱河路AC的距離約為248米.【解題分析】

過點D作DE⊥AC,垂足為E,設(shè)BE=x,根據(jù)AE=DE,列出方程即可解決問題.【題目詳解】過點D作DE⊥AC,垂足為E,設(shè)BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.25、(1)答案見解析(2)155°(3)答案見解析【解題分析】

(1)根據(jù)角的定義即可解決;(2)根據(jù)∠BOD=∠DOC+∠BOC,首先利用角平分線的定義和鄰補角的定義求得∠DOC和∠BOC即可;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論