版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省瀘縣重點達標名校2024學年中考數(shù)學考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.若分式有意義,則的取值范圍是()A.; B.; C.; D..2.如圖,這是由5個大小相同的整體搭成的幾何體,該幾何體的左視圖是()A. B. C. D.3.若a與﹣3互為倒數(shù),則a=()A.3 B.﹣3 C.13 D.-4.﹣2的絕對值是()A.2 B. C. D.5.已知關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.26.某校八年級兩個班,各選派10名學生參加學校舉行的“古詩詞”大賽,各參賽選手成績的數(shù)據(jù)分析如表所示,則以下判斷錯誤的是()班級平均數(shù)中位數(shù)眾數(shù)方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的總分高于八(1)班B.八(2)班的成績比八(1)班穩(wěn)定C.兩個班的最高分在八(2)班D.八(2)班的成績集中在中上游7.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設(shè)半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元8.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關(guān)于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是269.如圖,在平面直角坐標系xOy中,菱形AOBC的一個頂點O在坐標原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.8010.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當點沿著半圓,從點運動到點時,點運動的路徑長為()A.或 B.或 C.或 D.或二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,已知點A(﹣4,0)、B(0,3),對△AOB連續(xù)作旋轉(zhuǎn)變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個三角形的直角頂點的坐標是_____,第(2018)個三角形的直角頂點的坐標是______.12.若兩個關(guān)于x,y的二元一次方程組與有相同的解,則mn的值為_____.13.一個正多邊形的一個內(nèi)角是它的一個外角的5倍,則這個多邊形的邊數(shù)是_______________14.已知是整數(shù),則正整數(shù)n的最小值為___15.如圖,線段AB是⊙O的直徑,弦CD⊥AB,AB=8,∠CAB=22.5°,則CD的長等于___________________________.16.如圖,身高1.6米的小麗在陽光下的影長為2米,在同一時刻,一棵大樹的影長為8米,則這棵樹的高度為_____米.三、解答題(共8題,共72分)17.(8分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.18.(8分)如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.19.(8分)如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長.20.(8分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.證明:DE為⊙O的切線;連接OE,若BC=4,求△OEC的面積.21.(8分)已知點E是矩形ABCD的邊CD上一點,BF⊥AE于點F,求證△ABF∽△EAD.22.(10分)已知BD平分∠ABF,且交AE于點D.(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)設(shè)AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.23.(12分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.24.某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:商品名稱甲乙進價(元/件)4090售價(元/件)60120設(shè)其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.寫出y關(guān)于x的函數(shù)關(guān)系式;該商場計劃最多投入8000元用于購買這兩種商品,①至少要購進多少件甲商品?②若銷售完這些商品,則商場可獲得的最大利潤是多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
分式的分母不為零,即x-2≠1.【題目詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【題目點撥】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.2、A【解題分析】
觀察所給的幾何體,根據(jù)三視圖的定義即可解答.【題目詳解】左視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.【題目點撥】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.3、D【解題分析】試題分析:根據(jù)乘積是1的兩個數(shù)互為倒數(shù),可得3a=1,∴a=13故選C.考點:倒數(shù).4、A【解題分析】分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣2到原點的距離是2,所以﹣2的絕對值是2,故選A.5、D【解題分析】
根據(jù)“一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4”,結(jié)合根與系數(shù)的關(guān)系,分別列出關(guān)于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【題目詳解】解:根據(jù)題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.【題目點撥】本題考查了根與系數(shù)的關(guān)系,正確掌握根與系數(shù)的關(guān)系是解決問題的關(guān)鍵.6、C【解題分析】
直接利用表格中數(shù)據(jù),結(jié)合方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù)得出答案.【題目詳解】A選項:八(2)班的平均分高于八(1)班且人數(shù)相同,所以八(2)班的總分高于八(1)班,正確;
B選項:八(2)班的方差比八(1)班小,所以八(2)班的成績比八(1)班穩(wěn)定,正確;
C選項:兩個班的最高分無法判斷出現(xiàn)在哪個班,錯誤;
D選項:八(2)班的中位數(shù)高于八(1)班,所以八(2)班的成績集中在中上游,正確;
故選C.【題目點撥】考查了方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù),利用表格獲取正確的信息是解題關(guān)鍵.7、D【解題分析】
設(shè)y與x之間的函數(shù)關(guān)系式為y=kπx2,由待定系數(shù)法就可以求出解析式,再求出x=6時y的值即可得.【題目詳解】解:根據(jù)題意設(shè)y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【題目點撥】本題考查了二次函數(shù)的應用,解答時求出函數(shù)的解析式是關(guān)鍵.8、C【解題分析】
根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【題目詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項錯誤;B、因為共有5組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項錯誤;C、平均數(shù)==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【題目點撥】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點的概念.9、B【解題分析】
過點A作AM⊥x軸于點M,設(shè)OA=a,通過解直角三角形找出點A的坐標,結(jié)合反比例函數(shù)圖象上點的坐標特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【題目詳解】過點A作AM⊥x軸于點M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標為(a,a).∵點A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【題目點撥】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.10、A【解題分析】
根據(jù)平行線的性質(zhì)及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進而求出半徑即可得出答案,注意分兩種情況討論.【題目詳解】當點D與B重合時,M與F重合,當點D與A重合時,M與E重合,連接BD,F(xiàn)M,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運動的路徑長為當時,同理可得點M運動的路徑長為故選:A.【題目點撥】本題主要考查動點的運動軌跡,掌握圓周角定理的推論,平行線的性質(zhì)和弧長公式是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(16,)(8068,)【解題分析】
利用勾股定理列式求出AB的長,再根據(jù)圖形寫出第(5)個三角形的直角頂點的坐標即可;觀察圖形不難發(fā)現(xiàn),每3個三角形為一個循環(huán)組依次循環(huán),用2018除以3,根據(jù)商和余數(shù)的情況確定出第(2018)個三角形的直角頂點到原點O的距離,然后寫出坐標即可.【題目詳解】∵點A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)個三角形的直角頂點的坐標是(4,);∵5÷3=1余2,∴第(5)個三角形的直角頂點的坐標是(16,),∵2018÷3=672余2,∴第(2018)個三角形是第672組的第二個直角三角形,其直角頂點與第672組的第二個直角三角形頂點重合,∴第(2018)個三角形的直角頂點的坐標是(8068,).故答案為:(16,);(8068,)【題目點撥】本題考查了坐標與圖形變化-旋轉(zhuǎn),解題的關(guān)鍵是根據(jù)題意找出每3個三角形為一個循環(huán)組依次循環(huán).12、1【解題分析】
聯(lián)立不含m、n的方程求出x與y的值,代入求出m、n的值,即可求出所求式子的值.【題目詳解】聯(lián)立得:,①×2+②,得:10x=20,解得:x=2,將x=2代入①,得:1-y=1,解得:y=0,則,將x=2、y=0代入,得:,解得:,則mn=1,故答案為1.【題目點撥】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程都成立的未知數(shù)的值.13、1【解題分析】
設(shè)這個正多邊的外角為x°,則內(nèi)角為5x°,根據(jù)內(nèi)角和外角互補可得x+5x=180,解可得x的值,再利用外角和360°÷外角度數(shù)可得邊數(shù).【題目詳解】設(shè)這個正多邊的外角為x°,由題意得:x+5x=180,解得:x=30,360°÷30°=1.故答案為:1.【題目點撥】此題主要考查了多邊形的內(nèi)角和外角,關(guān)鍵是計算出外角的度數(shù),進而得到邊數(shù).14、1【解題分析】
因為是整數(shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【題目詳解】∵,且是整數(shù),
∴是整數(shù),即1n是完全平方數(shù);
∴n的最小正整數(shù)值為1.
故答案為:1.【題目點撥】主要考查了二次根式的定義,關(guān)鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負數(shù)進行解答.15、4【解題分析】
連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出CE的長,進而得出CD.【題目詳解】連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴OC=AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴CE=OC=,∴CD=2CE=,故答案為.【題目點撥】考查了垂徑定理,等腰直角三角形的性質(zhì),以及圓周角定理,熟練掌握垂徑定理是解本題的關(guān)鍵.16、6.4【解題分析】
根據(jù)平行投影,同一時刻物長與影長的比值固定即可解題.【題目詳解】解:由題可知:,解得:樹高=6.4米.【題目點撥】本題考查了投影的實際應用,屬于簡單題,熟悉投影概念,列比例式是解題關(guān)鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)【解題分析】
(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質(zhì)及角的和差關(guān)系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點.設(shè),則,.根據(jù)兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數(shù)的定義即可求出的值.【題目詳解】(1)連接,.∵是的直徑,弦于點,∴,.∵,∴.∴為等邊三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴與相切.(2)連接EF,作于點.設(shè),則,.∵與相切,∴.又∵,∴.又∵,∴四邊形為平行四邊形.∵,∴四邊形為菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【題目點撥】本題考查圓的綜合問題,涉及切線的判定與性質(zhì),菱形的判定與性質(zhì),等邊三角形的性質(zhì)及銳角三角函數(shù),考查學生綜合運用知識的能力,熟練掌握相關(guān)性質(zhì)是解題關(guān)鍵.18、解:(1);(2)存在,P(,);(1)Q點坐標為(0,-)或(0,)或(0,-1)或(0,-1).【解題分析】
(1)已知點A坐標可確定直線AB的解析式,進一步能求出點B的坐標.點A是拋物線的頂點,那么可以將拋物線的解析式設(shè)為頂點式,再代入點B的坐標,依據(jù)待定系數(shù)法可解.(2)首先由拋物線的解析式求出點C的坐標,在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個三角形不能構(gòu)成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個直角后容易發(fā)現(xiàn),點P正好在第二象限的角平分線上,聯(lián)立直線y=-x與拋物線的解析式,直接求交點坐標即可,同時還要注意點P在第二象限的限定條件.(1)分別以A、B、Q為直角頂點,分類進行討論,找出相關(guān)的相似三角形,依據(jù)對應線段成比例進行求解即可.【題目詳解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=1,∴B的坐標是(1,0).∵A為頂點,∴設(shè)拋物線的解析為y=a(x﹣1)2﹣4,把B(1,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣1.(2)存在.∵OB=OC=1,OP=OP,∴當∠POB=∠POC時,△POB≌△POC,此時PO平分第二象限,即PO的解析式為y=﹣x.設(shè)P(m,﹣m),則﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),∴P(,).(1)①如圖,當∠Q1AB=90°時,△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,-);②如圖,當∠Q2BA=90°時,△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如圖,當∠AQ1B=90°時,作AE⊥y軸于E,則△BOQ1∽△Q1EA,∴,即∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,即Q1(0,﹣1),Q4(0,﹣1).綜上,Q點坐標為(0,-)或(0,)或(0,﹣1)或(0,﹣1).19、(1)直線l與⊙O相切;(2)證明見解析;(3)214【解題分析】試題分析:(1)連接OE、OB、OC.由題意可證明BE=(2)先由角平分線的定義可知∠ABF=∠CBF,然后再證明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依據(jù)等角對等邊證明BE=EF即可;(3)先求得BE的長,然后證明△BED∽△AEB,由相似三角形的性質(zhì)可求得AE的長,于是可得到AF的長.試題解析:(1)直線l與⊙O相切.理由如下:如圖1所示:連接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴BE=∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直線l與⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴DEBE=BEAE,即∴AF=AE﹣EF=494﹣1=21考點:圓的綜合題.20、(1)證明見解析;(2)【解題分析】試題分析:(1)首先連接OD,CD,由以BC為直徑的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角為30°,可得AD=BD,即可證得OD∥AC,繼而可證得結(jié)論;(2)首先根據(jù)三角函數(shù)的性質(zhì),求得BD,DE,AE的長,然后求得△BOD,△ODE,△ADE以及△ABC的面積,繼而求得答案.試題解析:(1)證明:連接OD,CD,∵BC為⊙O直徑,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D點在⊙O上,∴DE為⊙O的切線;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC?cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB?CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD?cos30°=3,∴S△ODE=OD?DE=×2×=,S△ADE=AE?DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.21、證明見解析【解題分析】試題分析:先利用等角的余角相等得到根據(jù)有兩組角對應相等,即可證明兩三角形相似.試題解析:∵四邊形為矩形,于點F,點睛:兩組角對應相等,兩三角形相似.22、(1)見解析:(2)見解析.【解題分析】試題分析:(1)根據(jù)角平分線的作法作出∠BAE的平分線AP即可;(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.試題解析:(1)如圖所示:(2)如圖:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.考點:1.菱形的判定;2.作圖—基本作圖.23、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解題分析】
(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進而可利用SAS證明△CQB≌△CPA,進而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進一步即可證得結(jié)論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 維生素c課程設(shè)計
- 蓋板零件課程設(shè)計
- 保險行業(yè)會計職責總結(jié)
- 海底動物創(chuàng)意課程設(shè)計
- 咨詢行業(yè)的營銷工作總結(jié)
- 火葬場衛(wèi)生整治工作總結(jié)
- 2024年西雙版納職業(yè)技術(shù)學院單招職業(yè)適應性測試題庫含答案
- 水務領(lǐng)域數(shù)字經(jīng)濟發(fā)展的研究計劃
- 2024年認識圖形二教案
- 2024年秋天的信教案模板
- (2024年)長歌行漢樂府古詩PPT語文課件
- GB/T 43674-2024加氫站通用要求
- 倉庫班長年終總結(jié)及工作計劃
- 部編人教版二年級勞動教育上冊期末試卷(帶答案)
- 肛門手術(shù)的鎮(zhèn)痛研課件
- 中山醫(yī)院報告查詢app
- 檢驗科質(zhì)控總結(jié)匯報
- 《如何做好中層》課件
- 破產(chǎn)法培訓課件銀行
- 山東大學《高級語言程序設(shè)計》2022-2023學年期末試卷
- 智能陽臺種菜項目計劃書
評論
0/150
提交評論