版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆黑龍江省哈爾濱156中學中考數(shù)學押題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.函數(shù)的圖象上有兩點,,若,則()A. B. C. D.、的大小不確定2.已知圓錐的側面積為10πcm2,側面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm3.老師隨機抽查了學生讀課外書冊數(shù)的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數(shù)是()A.5 B.9 C.15 D.224.下列各式中,不是多項式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)5.某市6月份日平均氣溫統(tǒng)計如圖所示,那么在日平均氣溫這組數(shù)據(jù)中,中位數(shù)是()A.8 B.10 C.21 D.226.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.7.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學記數(shù)法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1028.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π9.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km10.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F(xiàn)分別是AB,CD的中點,則EF=_____.12.分解因式:2a2﹣2=_____.13.在△ABC中,∠C=90°,AC=3,BC=4,點D,E,F分別是邊AB,AC,BC的中點,則14.如圖,AB∥CD,點E是CD上一點,∠AEC=40°,EF平分∠AED交AB于點F,則∠AFE=___度.15.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.16.已知、為兩個連續(xù)的整數(shù),且,則=________.17.如圖所示,一只螞蟻從A點出發(fā)到D,E,F(xiàn)處尋覓食物.假定螞蟻在每個岔路口都等可能的隨機選擇一條向左下或右下的路徑(比如A岔路口可以向左下到達B處,也可以向右下到達C處,其中A,B,C都是岔路口).那么,螞蟻從A出發(fā)到達E處的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)一次函數(shù)y=34x的圖象如圖所示,它與二次函數(shù)y=ax2(1)求點C的坐標;(2)設二次函數(shù)圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關系式.19.(5分)已知:不等式≤2+x(1)求不等式的解;(2)若實數(shù)a滿足a>2,說明a是否是該不等式的解.20.(8分)已知關于x,y的二元一次方程組的解為,求a、b的值.21.(10分)如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點E按順時針方向旋轉,當旋轉到EF與AD重合時停止轉動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當旋轉停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.22.(10分)“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結合圖中所給信息解答下列問題:(1)本次共調查名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是;(2)補全條形統(tǒng)計圖;(3)該校共有800名學生,根據(jù)以上信息,請你估計全校學生中對這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調查,數(shù)學課外實踐小組的學生對交通法規(guī)有了更多的認識,學校準備從組內的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.23.(12分)已知關于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負數(shù).(1)求m的取值范圍;(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.24.(14分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設BP=t.(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結果即可).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】
根據(jù)x1、x1與對稱軸的大小關系,判斷y1、y1的大小關系.【題目詳解】解:∵y=-1x1-8x+m,∴此函數(shù)的對稱軸為:x=-=-=-1,∵x1<x1<-1,兩點都在對稱軸左側,a<0,∴對稱軸左側y隨x的增大而增大,∴y1<y1.故選A.【題目點撥】此題主要考查了函數(shù)的對稱軸求法和函數(shù)的單調性,利用二次函數(shù)的增減性解題時,利用對稱軸得出是解題關鍵.2、C【解題分析】
圓錐的側面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【題目詳解】設母線長為R,則圓錐的側面積==10π,∴R=10cm,故選C.【題目點撥】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.3、B【解題分析】
條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.用整個圓的面積表示總數(shù)(單位1),用圓的扇形面積表示各部分占總數(shù)的百分數(shù).【題目詳解】課外書總人數(shù):6÷25%=24(人),看5冊的人數(shù):24﹣5﹣6﹣4=9(人),故選B.【題目點撥】本題考查了統(tǒng)計圖與概率,熟練掌握條形統(tǒng)計圖與扇形統(tǒng)計圖是解題的關鍵.4、D【解題分析】
原式分解因式,判斷即可.【題目詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【題目點撥】考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.5、D【解題分析】分析:根據(jù)條形統(tǒng)計圖得到各數(shù)據(jù)的權,然后根據(jù)中位數(shù)的定義求解.詳解:一共30個數(shù)據(jù),第15個數(shù)和第16個數(shù)都是22,所以中位數(shù)是22.故選D.點睛:考查中位數(shù)的定義,看懂條形統(tǒng)計圖是解題的關鍵.6、D【解題分析】
由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【題目點撥】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.7、B【解題分析】試題分析:“960萬”用科學記數(shù)法表示為9.6×106,故選B.考點:科學記數(shù)法—表示較大的數(shù).8、A【解題分析】
利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.【題目詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【題目點撥】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和弧長公式.9、B【解題分析】
正負數(shù)的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數(shù)表示出來【題目詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【題目點撥】本題考查正負數(shù)在生活中的應用.注意用正負數(shù)表示的量必須是具有相反意義的量.10、D【解題分析】
由表易得x+(10-x)=10,所以總人數(shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【題目詳解】∵年齡為15歲和16歲的同學人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總人數(shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、3【解題分析】
延長AC和BD,交于M點,M、E、F三點共線,EF=MF-ME.【題目詳解】延長AC和BD,交于M點,M、E、F三點共線,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.【題目點撥】本題考查了直角三角形斜邊中線的性質.12、2(a+1)(a﹣1).【解題分析】
先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解.【題目詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【題目點撥】本題考查了提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.13、6【解題分析】
首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【題目詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點D、E、F分別是邊AB、AC、BC的中點,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【題目點撥】本題考查了勾股定理和三角形中位線定理.14、70°.【解題分析】
由平角求出∠AED的度數(shù),由角平分線得出∠DEF的度數(shù),再由平行線的性質即可求出∠AFE的度數(shù).【題目詳解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案為:70【題目點撥】本題考查的是平行線的性質以及角平分線的定義.熟練掌握平行線的性質,求出∠DEF的度數(shù)是解決問題的關鍵.15、或【解題分析】
由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【題目詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據(jù)題意,,.若點在矩形ABCD的內部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【題目點撥】本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質;(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據(jù)相似三角形對應邊成比例求出三角形的邊長.16、11【解題分析】
根據(jù)無理數(shù)的性質,得出接近無理數(shù)的整數(shù),即可得出a,b的值,即可得出答案.【題目詳解】∵a<<b,a、b為兩個連續(xù)的整數(shù),
∴,
∴a=5,b=6,
∴a+b=11.
故答案為11.【題目點撥】本題考查的是估算無理數(shù)的大小,熟練掌握無理數(shù)是解題的關鍵.17、【解題分析】試題分析:如圖所示,一只螞蟻從點出發(fā)后有ABD、ABE、ACE、ACF四條路,所以螞蟻從出發(fā)到達處的概率是.考點:概率.三、解答題(共7小題,滿分69分)18、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解題分析】試題分析:(1)求得二次函數(shù)y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據(jù)點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據(jù)S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據(jù)勾股定理用m表示出AC的長,根據(jù)△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數(shù)表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數(shù)圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數(shù)與一次函數(shù)的綜合題.19、(1)x≥﹣1;(2)a是不等式的解.【解題分析】
(1)根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.
(2)根據(jù)不等式的解的定義求解可得【題目詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號得:2﹣x≤6+3x,移項、合并同類項得:﹣4x≤4,系數(shù)化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.【題目點撥】本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關鍵20、或【解題分析】
把代入二元一次方程組得到關于a,b的方程組,經(jīng)過整理,得到關于b的一元二次方程,解之即可得到b的值,把b的值代入一個關于a,b的二元一次方程,求出a的值,即可得到答案.【題目詳解】把代入二元一次方程組得:,
由①得:a=1+b,
把a=1+b代入②,整理得:
b2+b-2=0,
解得:b=-2或b=1,
把b=-2代入①得:a+2=1,
解得:a=-1,
把b=1代入①得:
a-1=1,
解得:a=2,
即或.【題目點撥】本題考查了二元一次方程組的解,正確掌握代入法是解題的關鍵.21、(1)詳見解析;(1)①詳見解析;②1;③.【解題分析】
(1)只要證明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根據(jù)ASA即可證明;②構建二次函數(shù),利用二次函數(shù)的性質即可解決問題;③如圖3中,作EH⊥BG于H.設NG=m,則BG=1m,BN=EN=m,EB=m.利用面積法求出EH,根據(jù)三角函數(shù)的定義即可解決問題.【題目詳解】(1)證明:如圖1中,∵四邊形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中點,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如圖1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,設BM=CN=x,則BN=4-x,∴S△BMN=?x(4-x)=-(x-1)1+1,∵-<0,∴x=1時,△BMN的面積最大,最大值為1.③解:如圖3中,作EH⊥BG于H.設NG=m,則BG=1m,BN=EN=m,EB=m.∴EG=m+m=(1+)m,∵S△BEG=?EG?BN=?BG?EH,∴EH==m,在Rt△EBH中,sin∠EBH=.【題目點撥】本題考查四邊形綜合題、矩形的性質、等腰直角三角形的判定和性質、全等三角形的判定和性質、旋轉變換、銳角三角函數(shù)等知識,解題的關鍵是準確尋找全等三角形解決問題,學會添加常用輔助線,學會利用參數(shù)解決問題,22、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學生中對這些交通法規(guī)“非常了解”的有320名;(4)甲和乙兩名學生同時被選中的概率為.【解題分析】【分析】(1)用A的人數(shù)以及所占的百分比就可以求出調查的總人數(shù),用C的人數(shù)除以調查的總人數(shù)后再乘以360度即可得;(2)根據(jù)D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補全條形統(tǒng)計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【題目詳解】(1)本次調查的學生總人數(shù)為24÷40%=60人,扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是360°×=90°,故答案為60、90°;(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+15+3)=18,補全條形圖如下:(3)估計全校學生中對這些交通法規(guī)“非常了解”的有800×40%=320名;(4)畫樹狀圖為:共有12種等可能的結果數(shù),其中甲和乙兩名學生同時被選中的結果數(shù)為2,所以甲和乙兩名學生同時被選中的概率為.【題目點撥】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、列表法或樹狀圖法求概率、用樣本估計總體等,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中找到必要的有關聯(lián)的信息進行解題是關鍵.23、(1)且,;(2)當m=1時,方程的整數(shù)根為0和3.【解題分析】
(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負數(shù)得出的取值;
(2)根據(jù)根與系數(shù)的關系得到x1+x2=3,,根據(jù)方程的兩個根都是整數(shù)可得m=1或.結合(1)的結論可知m1.解方程即可.【題目詳解】解:(1)∵關于x的分式方程的根為非負數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當m=1時,原方程可化為.解得:,.∴當m=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 團隊管理企業(yè)培訓
- 二零二五年度企業(yè)兼職市場營銷人員合同2篇
- 在線健康信息替代搜尋對老年人健康素養(yǎng)的影響研究-基于社會認知理論
- 醫(yī)生年終工作總結
- 2025年度綠色建筑合作框架協(xié)議范本3篇
- 基于前景理論的大規(guī)模傳染疫情應急管理決策研究
- 二零二五年POS機租賃與移動支付安全監(jiān)控合同3篇
- 臨床胃腸鏡術前術后護理要點
- Unit 4 Lesson 1My family photo(說課稿)-2024-2025學年冀教版(2024)初中英語七年級上冊
- 全國冀教版信息技術三年級上冊新授課 二 畫大熊貓 說課稿
- DB44∕T 2149-2018 森林資源規(guī)劃設計調查技術規(guī)程
- 肝移植的歷史、現(xiàn)狀與展望
- 商業(yè)定價表(含各商鋪價格測算銷售回款)
- 【化學】重慶市2021-2022學年高一上學期期末聯(lián)合檢測試題
- 供應商物料質量問題賠償協(xié)議(終端)
- 單位工程質量控制程序流程圖
- 部編版小學語文三年級(下冊)學期課程綱要
- 化學工業(yè)有毒有害作業(yè)工種范圍表
- 洼田飲水試驗
- 定置定位管理一
- 商票保貼協(xié)議
評論
0/150
提交評論