




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市楊浦區(qū)名校2024屆中考數(shù)學(xué)全真模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.等腰三角形底角與頂角之間的函數(shù)關(guān)系是()A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)2.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶33.已知一個(gè)多邊形的內(nèi)角和是1080°,則這個(gè)多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形4.在如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱為格點(diǎn),已知A、B是兩格點(diǎn),如果C也是圖中的格點(diǎn),且使得△ABC為等腰直角三角形,則這樣的點(diǎn)C有()A.6個(gè) B.7個(gè) C.8個(gè) D.9個(gè)5.關(guān)于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(diǎn)(2,2); B.函數(shù)圖像位于第一、三象限;C.當(dāng)時(shí),函數(shù)值隨著的增大而增大; D.當(dāng)時(shí),.6.如圖,“趙爽弦圖”是由四個(gè)全等的直角三角形與中間一個(gè)小正方形拼成的一個(gè)大正方形,大正方形與小正方形的邊長(zhǎng)之比是2∶1,若隨機(jī)在大正方形及其內(nèi)部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.57.如圖,O為直線AB上一點(diǎn),OE平分∠BOC,OD⊥OE于點(diǎn)O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°8.計(jì)算結(jié)果是()A.0 B.1 C.﹣1 D.x9.下列運(yùn)算正確的是()A.x2?x3=x6 B.x2+x2=2x4C.(﹣2x)2=4x2 D.(a+b)2=a2+b210.將拋物線y=x2﹣x+1先向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,則所得拋物線的表達(dá)式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4二、填空題(共7小題,每小題3分,滿分21分)11.一個(gè)圓錐的側(cè)面展開圖是半徑為6,圓心角為120°的扇形,那么這個(gè)圓錐的底面圓的半徑為____.12.解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為.13.如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC、BD,若S四邊形ABCD=18,則BD的最小值為_________.14.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個(gè)圖案中陰影小三角形的個(gè)數(shù)是.15.函數(shù)中,自變量x的取值范圍是.16.分解因式:mx2﹣4m=_____.17.分解因式:=____三、解答題(共7小題,滿分69分)18.(10分)為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)圖如圖(不完整).類別分?jǐn)?shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請(qǐng)你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計(jì)圖中,D部分所對(duì)的圓心角為n°,求n的值并補(bǔ)全頻數(shù)直方圖;(3)若成績(jī)?cè)?0分以上為優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?19.(5分)為實(shí)施“農(nóng)村留守兒童關(guān)愛計(jì)劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計(jì)圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;某愛心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個(gè)班級(jí)的概率.20.(8分)對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和直線m,給出如下定義:若存在一點(diǎn)P,使得點(diǎn)P到直線m的距離等于1,則稱P為直線m的平行點(diǎn).(1)當(dāng)直線m的表達(dá)式為y=x時(shí),①在點(diǎn),,中,直線m的平行點(diǎn)是______;②⊙O的半徑為,點(diǎn)Q在⊙O上,若點(diǎn)Q為直線m的平行點(diǎn),求點(diǎn)Q的坐標(biāo).(2)點(diǎn)A的坐標(biāo)為(n,0),⊙A半徑等于1,若⊙A上存在直線的平行點(diǎn),直接寫出n的取值范圍.21.(10分)為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.種類ABCDE出行方式共享單車步行公交車的士私家車根據(jù)以上信息,回答下列問題:(1)參與本次問卷調(diào)查的市民共有人,其中選擇B類的人數(shù)有人;(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).22.(10分)計(jì)算:﹣4cos45°+()﹣1+|﹣2|.23.(12分)如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點(diǎn)A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點(diǎn),且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說明理由;(3)有一動(dòng)點(diǎn)M從A點(diǎn)出發(fā),在⊙O上按順時(shí)針方向運(yùn)動(dòng)一周,當(dāng)S△MAO=S△CAO時(shí),求動(dòng)點(diǎn)M所經(jīng)過的弧長(zhǎng),并寫出此時(shí)M點(diǎn)的坐標(biāo).24.(14分)如圖,點(diǎn)C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點(diǎn)F.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解題分析】
根據(jù)一次函數(shù)的定義,可得答案.【題目詳解】設(shè)等腰三角形的底角為y,頂角為x,由題意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角與頂角之間的函數(shù)關(guān)系是一次函數(shù)關(guān)系,故選B.【題目點(diǎn)撥】本題考查了實(shí)際問題與一次函數(shù),根據(jù)題意正確列出函數(shù)關(guān)系式是解題的關(guān)鍵.2、A【解題分析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點(diǎn)晴:本題主要通過證出兩個(gè)三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對(duì)應(yīng)邊之比的平方,進(jìn)而將求面積比的問題轉(zhuǎn)化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關(guān)系(銳角三角形函數(shù))即可得出對(duì)應(yīng)邊之比,進(jìn)而得到面積比.3、D【解題分析】
根據(jù)多邊形的內(nèi)角和=(n﹣2)?180°,列方程可求解.【題目詳解】設(shè)所求多邊形邊數(shù)為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【題目點(diǎn)撥】本題考查根據(jù)多邊形的內(nèi)角和計(jì)算公式求多邊形的邊數(shù),解答時(shí)要會(huì)根據(jù)公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理.4、A【解題分析】
根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【題目詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時(shí),符合條件的C點(diǎn)有2個(gè);②AB為等腰直角△ABC其中的一條腰時(shí),符合條件的C點(diǎn)有4個(gè).故選:C.【題目點(diǎn)撥】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實(shí)際條件的圖形,再利用數(shù)學(xué)知識(shí)來求解.?dāng)?shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.5、C【解題分析】
直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【題目詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(diǎn)(2,-2),故此選項(xiàng)錯(cuò)誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項(xiàng)錯(cuò)誤;C、關(guān)于反比例函數(shù)y=-,當(dāng)x>0時(shí),函數(shù)值y隨著x的增大而增大,故此選項(xiàng)正確;D、關(guān)于反比例函數(shù)y=-,當(dāng)x>1時(shí),y>-4,故此選項(xiàng)錯(cuò)誤;故選C.【題目點(diǎn)撥】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.6、B【解題分析】
設(shè)大正方形邊長(zhǎng)為2,則小正方形邊長(zhǎng)為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【題目詳解】解:設(shè)大正方形邊長(zhǎng)為2,則小正方形邊長(zhǎng)為1,因?yàn)槊娣e比是相似比的平方,
所以大正方形面積為4,小正方形面積為1,
則針孔扎到小正方形(陰影部分)的概率是;故選:B.【題目點(diǎn)撥】本題考查了概率公式:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.7、B【解題分析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點(diǎn)睛:本題考查了角平分線的定義:從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線叫做這個(gè)角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.8、C【解題分析】試題解析:.故選C.考點(diǎn):分式的加減法.9、C【解題分析】
根據(jù)同底數(shù)冪的法則、合并同類項(xiàng)的法則、積的乘方法則、完全平方公式逐一進(jìn)行計(jì)算即可.【題目詳解】A、x2?x3=x5,故A選項(xiàng)錯(cuò)誤;B、x2+x2=2x2,故B選項(xiàng)錯(cuò)誤;C、(﹣2x)2=4x2,故C選項(xiàng)正確;D、(a+b)2=a2+2ab+b2,故D選項(xiàng)錯(cuò)誤,故選C.【題目點(diǎn)撥】本題考查了同底數(shù)冪的乘法、合并同類項(xiàng)、積的乘方以及完全平方公式,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵10、A【解題分析】
先將拋物線解析式化為頂點(diǎn)式,左加右減的原則即可.【題目詳解】y=x當(dāng)向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得y=x-故選A.【題目點(diǎn)撥】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點(diǎn)式進(jìn)行;二、填空題(共7小題,每小題3分,滿分21分)11、2【解題分析】
試題分析:設(shè)此圓錐的底面半徑為r,根據(jù)圓錐的側(cè)面展開圖扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng)可得,2πr=,解得r=2cm.考點(diǎn):圓錐側(cè)面展開扇形與底面圓之間的關(guān)系.12、詳見解析.【解題分析】
先根據(jù)不等式的性質(zhì)求出每個(gè)不等式的解集,再在數(shù)軸上表示出來,根據(jù)數(shù)軸找出不等式組公共部分即可.【題目詳解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為:﹣1≤x<1,故答案為:x<1、x≥﹣1、﹣1≤x<1.【題目點(diǎn)撥】本題考查了解一元一次不等式組的概念.13、6【解題分析】
過A作AM⊥CD于M,過A作AN⊥BC于N,先根據(jù)“AAS”證明△DAM≌△BAN,再證明四邊形AMCN為正方形,可求得AC=6,從而當(dāng)BD⊥AC時(shí)BD最小,且最小值為6.【題目詳解】如下圖,過A作AM⊥CD于M,過A作AN⊥BC于N,則∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四邊形AMCN為正方形,∴S四邊形ABCD=S四邊形AMCN=AC2,∴AC=6,∴BD⊥AC時(shí)BD最小,且最小值為6.故答案為:6.【題目點(diǎn)撥】本題考查了全等三角形的判定與性質(zhì),正方形的判定與性質(zhì),正確作出輔助線是解答本題的關(guān)鍵.14、4n﹣1.【解題分析】由圖可知:第一個(gè)圖案有陰影小三角形1個(gè),第二圖案有陰影小三角形1+4=6個(gè),第三個(gè)圖案有陰影小三角形1+8=11個(gè),···那么第n個(gè)就有陰影小三角形1+4(n﹣1)=4n﹣1個(gè).15、且.【解題分析】試題分析:求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)二次根式被開方數(shù)必須是非負(fù)數(shù)和分式分母不為0的條件,要使在實(shí)數(shù)范圍內(nèi)有意義,必須且.考點(diǎn):1.函數(shù)自變量的取值范圍;2.二次根式和分式有意義的條件.16、m(x+2)(x﹣2)【解題分析】
提取公因式法和公式法相結(jié)合因式分解即可.【題目詳解】原式故答案為【題目點(diǎn)撥】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關(guān)鍵.分解一定要徹底.17、x(y+2)(y-2)【解題分析】
原式提取x,再利用平方差公式分解即可.【題目詳解】原式=x(y2-4)=x(y+2)(y-2),故答案為x(y+2)(y-2).【題目點(diǎn)撥】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)40(2)126°,1(3)940名【解題分析】
(1)根據(jù)若A組的頻數(shù)比B組小24,且已知兩個(gè)組的百分比,據(jù)此即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得a、b的值;(2)利用360°乘以對(duì)應(yīng)的比例即可求解;(3)利用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可求解.【題目詳解】(1)學(xué)生總數(shù)是24÷(20%﹣8%)=200(人),則a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C組的人數(shù)是:200×25%=1.;(3)樣本D、E兩組的百分?jǐn)?shù)的和為1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估計(jì)成績(jī)優(yōu)秀的學(xué)生有940名.【題目點(diǎn)撥】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題.19、解:(1)該校班級(jí)個(gè)數(shù)為4÷20%=20(個(gè)),只有2名留守兒童的班級(jí)個(gè)數(shù)為:20﹣(2+3+4+5+4)=2(個(gè)),該校平均每班留守兒童的人數(shù)為:=4(名),補(bǔ)圖如下:(2)由(1)得只有2名留守兒童的班級(jí)有2個(gè),共4名學(xué)生.設(shè)A1,A2來自一個(gè)班,B1,B2來自一個(gè)班,有樹狀圖可知,共有12中等可能的情況,其中來自一個(gè)班的共有4種情況,則所選兩名留守兒童來自同一個(gè)班級(jí)的概率為:=.【解題分析】(1)首先求出班級(jí)數(shù),然后根據(jù)條形統(tǒng)計(jì)圖求出只有2名留守兒童的班級(jí)數(shù),再求出總的留守兒童數(shù),最后求出每班平均留守兒童數(shù);(2)利用樹狀圖確定可能種數(shù)和來自同一班的種數(shù),然后就能算出來自同一個(gè)班級(jí)的概率.20、(1)①,;②,,,;(2).【解題分析】
(1)①根據(jù)平行點(diǎn)的定義即可判斷;②分兩種情形:如圖1,當(dāng)點(diǎn)B在原點(diǎn)上方時(shí),作OH⊥AB于點(diǎn)H,可知OH=1.如圖2,當(dāng)點(diǎn)B在原點(diǎn)下方時(shí),同法可求;(2)如圖,直線OE的解析式為,設(shè)直線BC//OE交x軸于C,作CD⊥OE于D.設(shè)⊙A與直線BC相切于點(diǎn)F,想辦法求出點(diǎn)A的坐標(biāo),再根據(jù)對(duì)稱性求出左側(cè)點(diǎn)A的坐標(biāo)即可解決問題;【題目詳解】解:(1)①因?yàn)镻2、P3到直線y=x的距離為1,所以根據(jù)平行點(diǎn)的定義可知,直線m的平行點(diǎn)是,,故答案為,.②解:由題意可知,直線m的所有平行點(diǎn)組成平行于直線m,且到直線m的距離為1的直線.設(shè)該直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.如圖1,當(dāng)點(diǎn)B在原點(diǎn)上方時(shí),作OH⊥AB于點(diǎn)H,可知OH=1.由直線m的表達(dá)式為y=x,可知∠OAB=∠OBA=45°.所以.直線AB與⊙O的交點(diǎn)即為滿足條件的點(diǎn)Q.連接,作軸于點(diǎn)N,可知.在中,可求.所以.在中,可求.所以.所以點(diǎn)的坐標(biāo)為.同理可求點(diǎn)的坐標(biāo)為.如圖2,當(dāng)點(diǎn)B在原點(diǎn)下方時(shí),可求點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,綜上所述,點(diǎn)Q的坐標(biāo)為,,,.(2)如圖,直線OE的解析式為,設(shè)直線BC∥OE交x軸于C,作CD⊥OE于D.當(dāng)CD=1時(shí),在Rt△COD中,∠COD=60°,∴,設(shè)⊙A與直線BC相切于點(diǎn)F,在Rt△ACE中,同法可得,∴,∴,根據(jù)對(duì)稱性可知,當(dāng)⊙A在y軸左側(cè)時(shí),,觀察圖象可知滿足條件的N的值為:.【題目點(diǎn)撥】此題考查一次函數(shù)綜合題、直線與圓的位置關(guān)系、銳角三角函數(shù)、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題.21、(1)800,240;(2)補(bǔ)圖見解析;(3)9.6萬人.【解題分析】試題分析:(1)由C類別人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)乘以B類別百分比即可得;(2)根據(jù)百分比之和為1求得A類別百分比,再乘以360°和總?cè)藬?shù)可分別求得;(3)總?cè)藬?shù)乘以樣本中A、B、C三類別百分比之和可得答案.試題解析:(1)本次調(diào)查的市民有200÷25%=800(人),∴B類別的人數(shù)為800×30%=240(人),故答案為800,240;(2)∵A類人數(shù)所占百分比為1﹣(30%+25%+14%+6%)=25%,∴A類對(duì)應(yīng)扇形圓心角α的度數(shù)為360°×25%=90°,A類的人數(shù)為800×25%=200(人),補(bǔ)全條形圖如下:(3)12×(25%+30%+25%)=9.6(萬人),答:估計(jì)該市“綠色出行”方式的人數(shù)約為9.6萬人.考點(diǎn):1、條形統(tǒng)計(jì)圖;2、用樣本估計(jì)總體;3、統(tǒng)計(jì)表;4、扇形統(tǒng)計(jì)圖22、4【解題分析】分析:代入45°角的余弦函數(shù)值,結(jié)合“負(fù)整數(shù)指數(shù)冪的意義”和“二次根式的相關(guān)運(yùn)算法則”進(jìn)行計(jì)算即可.詳解:原式=.點(diǎn)睛:熟記“特殊角的三角函數(shù)值、負(fù)整數(shù)指數(shù)冪的意義:(為正整數(shù))”是正確解答本題的關(guān)鍵.23、(1)60°;(2)見解析;(3)對(duì)應(yīng)的M點(diǎn)坐標(biāo)分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解題分析】
(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.
(2)由(1)的結(jié)論知:OA=AC,因此OA=AC=AP,即OP邊上的中線等于OP的一半,由此可證得△OCP是直角三角形,且∠OCP=90°,由此可判斷出PC與⊙O的位置關(guān)系.
(3)此題應(yīng)考慮多種情況,若△MAO、△OAC的面積相等,那么它們的高必相等,因此有四個(gè)符合條件的M點(diǎn),即:C點(diǎn)以及C點(diǎn)關(guān)于x軸、y軸、原點(diǎn)的對(duì)稱點(diǎn),可據(jù)此進(jìn)行求解.【題目詳解】(1)∵OA=OC,∠OAC=60°,∴△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 利用網(wǎng)絡(luò)資源備考2024年汽車維修工考試的策略與試題及答案
- 育才中學(xué)數(shù)學(xué)試題及答案
- 小學(xué)一年級(jí)語文試題前瞻及答案
- 小學(xué)六年級(jí)語文考前模擬試題及答案
- 2024年語文考試真題試題及答案
- 寵物營(yíng)養(yǎng)師在寵物救助中的角色與試題答案
- 歸納總結(jié)2024年統(tǒng)計(jì)學(xué)考試試題及答案
- 中班點(diǎn)數(shù)測(cè)試題及答案
- 汽車維修行業(yè)發(fā)展趨勢(shì)及挑戰(zhàn)試題及答案
- 2024年汽車工業(yè)技術(shù)革新方向試題及答案
- 英語-安徽省安慶市2024-2025學(xué)年高三下學(xué)期第二次模擬考試試卷(安慶二模)試題和答案
- 2025屆江蘇省七市高三第二次調(diào)研測(cè)試物理+答案
- 陽光心理 健康人生-2025年春季學(xué)期初中生心理健康教育主題班會(huì)課件
- 2025年武漢鐵路橋梁職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)必考題
- 2025年第六屆(中小學(xué)組)國(guó)家版圖知識(shí)競(jìng)賽測(cè)試題庫(kù)及答案
- T∕ZZB 2708-2022 化妝品包裝用玻璃瓶
- 中醫(yī)診所備案信息表
- 網(wǎng)格本模板(A4) (2)
- 固定資產(chǎn)考試試題(共30頁(yè)).doc
- 郭德綱官衣賀喜-《官衣賀喜》相聲劇本
- 上海交通大學(xué)碩士論文封面格式模板
評(píng)論
0/150
提交評(píng)論