2024屆青海省海西中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第1頁
2024屆青海省海西中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第2頁
2024屆青海省海西中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第3頁
2024屆青海省海西中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第4頁
2024屆青海省海西中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆青海省海西中考押題數(shù)學(xué)預(yù)測(cè)卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點(diǎn)E,EF⊥BD垂足為F.則下列結(jié)論錯(cuò)誤的是()A.AEEC=BEED B.AE2.如圖,點(diǎn)E在△DBC的邊DB上,點(diǎn)A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④3.我國(guó)古代數(shù)學(xué)名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.4.下列命題中,真命題是()A.對(duì)角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對(duì)稱圖形又是中心對(duì)稱圖形C.圓的切線垂直于經(jīng)過切點(diǎn)的半徑D.垂直于同一直線的兩條直線互相垂直5.甲、乙兩人約好步行沿同一路線同一方向在某景點(diǎn)集合,已知甲乙二人相距660米,二人同時(shí)出發(fā),走了24分鐘時(shí),由于乙距離景點(diǎn)近,先到達(dá)等候甲,甲共走了30分鐘也到達(dá)了景點(diǎn)與乙相遇.在整個(gè)行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發(fā)的時(shí)間(分鐘)之間的關(guān)系如圖所示,下列說法錯(cuò)誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點(diǎn)2100米 D.乙距離景點(diǎn)420米6.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米7.在一個(gè)不透明的盒子里有2個(gè)紅球和n個(gè)白球,這些球除顏色外其余完全相同,搖勻后隨機(jī)摸出一個(gè),摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.38.一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球則兩次摸到的球的顏色不同的概率為()A. B. C. D.9.如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對(duì)角線的交點(diǎn)M,分別于AB、BC交于點(diǎn)D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.410.有三張正面分別標(biāo)有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再?gòu)氖S嗟目ㄆ腥稳∫粡垼瑒t兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.12.半徑是6cm的圓內(nèi)接正三角形的邊長(zhǎng)是_____cm.13.如圖,“人字梯”放在水平的地面上,當(dāng)梯子的一邊與地面所夾的銳角為時(shí),兩梯角之間的距離BC的長(zhǎng)為周日亮亮幫助媽媽整理換季衣服,先使為,后又調(diào)整為,則梯子頂端離地面的高度AD下降了______結(jié)果保留根號(hào).14.如圖,如果四邊形ABCD中,AD=BC=6,點(diǎn)E、F、G分別是AB、BD、AC的中點(diǎn),那么△EGF面積的最大值為_____.15.如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.16.不等式組的解集是_____;三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點(diǎn)D,連接AD,過D作AC的垂線,交AC邊于點(diǎn)E,交AB邊的延長(zhǎng)線于點(diǎn)F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長(zhǎng).18.(8分)甲、乙、丙、丁四位同學(xué)進(jìn)行乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.若確定甲打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,恰好選中乙同學(xué)的概率是.若隨機(jī)抽取兩位同學(xué),請(qǐng)用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.19.(8分)已知:如圖.D是的邊上一點(diǎn),,交于點(diǎn)M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.20.(8分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為C,直線y=x+3與x軸交于點(diǎn)D.(1)求拋物線的頂點(diǎn)C的坐標(biāo)及A,B兩點(diǎn)的坐標(biāo);(2)將拋物線y=x2﹣6x+9向上平移1個(gè)單位長(zhǎng)度,再向左平移t(t>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍;(3)點(diǎn)P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點(diǎn),當(dāng)△PAB的面積是△ABC面積的2倍時(shí),求m,n的值.21.(8分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.22.(10分)如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,M,N均在格點(diǎn)上,P為線段MN上的一個(gè)動(dòng)點(diǎn)(1)MN的長(zhǎng)等于_______,(2)當(dāng)點(diǎn)P在線段MN上運(yùn)動(dòng),且使PA2+PB2取得最小值時(shí),請(qǐng)借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點(diǎn)P的位置,并簡(jiǎn)要說明你是怎么畫的,(不要求證明)23.(12分)如圖,在△OAB中,OA=OB,C為AB中點(diǎn),以O(shè)為圓心,OC長(zhǎng)為半徑作圓,AO與⊙O交于點(diǎn)E,OB與⊙O交于點(diǎn)F和D,連接EF,CF,CF與OA交于點(diǎn)G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.24.某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2018年春節(jié)期間旅游情況統(tǒng)計(jì)圖(如圖),根據(jù)圖中信息解答下列問題:(1)2018年春節(jié)期間,該市A、B、C、D、E這五個(gè)景點(diǎn)共接待游客人數(shù)為多少?(2)扇形統(tǒng)計(jì)圖中E景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是,并補(bǔ)全條形統(tǒng)計(jì)圖.(3)甲,乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中隨機(jī)選擇一個(gè),求這兩個(gè)旅行團(tuán)選中同一景點(diǎn)的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

利用平行線的性質(zhì)以及相似三角形的性質(zhì)一一判斷即可.【題目詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項(xiàng)故選:A.【題目點(diǎn)撥】考查平行線的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.2、A【解題分析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質(zhì)即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點(diǎn)睛:本題考查全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考選擇題中的壓軸題.3、C【解題分析】

設(shè)大馬有x匹,小馬有y匹,根據(jù)題意可得等量關(guān)系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程組即可.【題目詳解】解:設(shè)大馬有x匹,小馬有y匹,由題意得:,故選C.【題目點(diǎn)撥】此題主要考查了由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.4、C【解題分析】分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.解答:解:A、錯(cuò)誤,例如對(duì)角線互相垂直的等腰梯形;B、錯(cuò)誤,等腰梯形是軸對(duì)稱圖形不是中心對(duì)稱圖形;C、正確,符合切線的性質(zhì);D、錯(cuò)誤,垂直于同一直線的兩條直線平行.故選C.5、D【解題分析】

根據(jù)圖中信息以及路程、速度、時(shí)間之間的關(guān)系一一判斷即可.【題目詳解】甲的速度==70米/分,故A正確,不符合題意;設(shè)乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項(xiàng)不符合題意,70×30=2100,故選項(xiàng)C正確,不符合題意,24×60=1440米,乙距離景點(diǎn)1440米,故D錯(cuò)誤,故選D.【題目點(diǎn)撥】本題考查一次函數(shù)的應(yīng)用,行程問題等知識(shí),解題的關(guān)鍵是讀懂圖象信息,靈活運(yùn)用所學(xué)知識(shí)解決問題.6、C【解題分析】

在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【題目詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【題目點(diǎn)撥】本題考查勾股定理的運(yùn)用,利用梯子長(zhǎng)度不變找到斜邊是關(guān)鍵.7、B【解題分析】∵摸到紅球的概率為,∴,解得n=8,故選B.8、B【解題分析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計(jì)算.【題目詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【題目點(diǎn)撥】掌握分類討論的方法是本題解題的關(guān)鍵.9、C【解題分析】

本題可從反比例函數(shù)圖象上的點(diǎn)E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.【題目詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則,過點(diǎn)M作MG⊥y軸于點(diǎn)G,作MN⊥x軸于點(diǎn)N,則S□ONMG=|k|.又∵M(jìn)為矩形ABCO對(duì)角線的交點(diǎn),∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴.解得:k=1.故選C.【題目點(diǎn)撥】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點(diǎn)分別向兩條坐標(biāo)軸作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|,本知識(shí)點(diǎn)是中考的重要考點(diǎn),同學(xué)們應(yīng)高度關(guān)注.10、C【解題分析】畫樹狀圖得:

∵共有6種等可能的結(jié)果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,

∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【題目點(diǎn)撥】運(yùn)用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解題分析】

根據(jù)題意可求AD的長(zhǎng)度,即可得CD的長(zhǎng)度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【題目詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【題目點(diǎn)撥】本題考查了菱形的性質(zhì),解直角三角形,熟練運(yùn)用菱形性質(zhì)解決問題是本題的關(guān)鍵.12、6【解題分析】

根據(jù)題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質(zhì)解答即可.【題目詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據(jù)垂徑定理,BC=2×BD=6,故答案為6.【題目點(diǎn)撥】本題主要考查了正多邊形和圓,正三角形的性質(zhì),熟練掌握等邊三角形的性質(zhì)是解題的關(guān)鍵,根據(jù)圓的內(nèi)接正三角形的特點(diǎn),求出內(nèi)心到每個(gè)頂點(diǎn)的距離,可求出內(nèi)接正三角形的邊長(zhǎng).13、【解題分析】

根據(jù)題意畫出圖形,進(jìn)而利用銳角三角函數(shù)關(guān)系得出答案.【題目詳解】解:如圖1所示:

過點(diǎn)A作于點(diǎn)D,

由題意可得:,

則是等邊三角形,

故BC,

則,

如圖2所示:

過點(diǎn)A作于點(diǎn)E,

由題意可得:,

則是等腰直角三角形,,

則,

故梯子頂端離地面的高度AD下降了

故答案為:.【題目點(diǎn)撥】此題主要考查了解直角三角形的應(yīng)用,正確畫出圖形利用銳角三角三角函數(shù)關(guān)系分析是解題關(guān)鍵.14、4.1.【解題分析】

取CD的值中點(diǎn)M,連接GM,F(xiàn)M.首先證明四邊形EFMG是菱形,推出當(dāng)EF⊥EG時(shí),四邊形EFMG是矩形,此時(shí)四邊形EFMG的面積最大,最大面積為9,由此可得結(jié)論.【題目詳解】解:取CD的值中點(diǎn)M,連接GM,F(xiàn)M.∵AG=CG,AE=EB,∴GE是△ABC的中位線∴EG=BC,同理可證:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四邊形EFMG是菱形,∴當(dāng)EF⊥EG時(shí),四邊形EFMG是矩形,此時(shí)四邊形EFMG的面積最大,最大面積為9,∴△EGF的面積的最大值為S四邊形EFMG=4.1,故答案為4.1.【題目點(diǎn)撥】本題主要考查菱形的判定和性質(zhì),利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關(guān)鍵.15、1【解題分析】

利用△ACD∽△CBD,對(duì)應(yīng)線段成比例就可以求出.【題目詳解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【題目點(diǎn)撥】本題考查了相似三角形的性質(zhì)和判定,熟練掌握相似三角形的判定方法是關(guān)鍵.16、x≤1【解題分析】分析:分別求出不等式組中兩個(gè)不等式的解集,找出解集的公共部分即可確定出不等式組的解集.詳解:,由①得:x由②得:.則不等式組的解集為:x.故答案為x≤1.點(diǎn)睛:本題主要考查了解一元一次不等式組.三、解答題(共8題,共72分)17、(1)見解析;(2)2π.【解題分析】

證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長(zhǎng)度=.【題目點(diǎn)撥】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了弧長(zhǎng)公式.18、(1)13;(2)【解題分析】

1)由題意可得共有乙、丙、丁三位同學(xué),恰好選中乙同學(xué)的只有一種情況,則可利用概率公式求解即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式求解即可求得答案.【題目詳解】解:(1)∵甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,確定甲打第一場(chǎng),再?gòu)钠溆嗟娜煌瑢W(xué)中隨機(jī)選取一位,∴恰好選到丙的概率是:13(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,恰好選中甲、乙兩人的有2種情況,∴恰好選中甲、乙兩人的概率為:2【題目點(diǎn)撥】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.19、(1)證明見解析;(2)四邊形ADCN是矩形,理由見解析.【解題分析】

(1)根據(jù)平行得出∠DAM=∠NCM,根據(jù)ASA推出△AMD≌△CMN,得出AD=CN,推出四邊形ADCN是平行四邊形即可;(2)根據(jù)∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根據(jù)矩形的判定得出即可.【題目詳解】證明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四邊形ADCN是平行四邊形,∴CD=AN;(2)解:四邊形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四邊形ADCN是平行四邊形,∴MD=MN=MA=MC,∴AC=DN,∴四邊形ADCN是矩形.【題目點(diǎn)撥】本題考查了全等三角形的性質(zhì)和判定,平行四邊形的判定和性質(zhì),矩形的判定的應(yīng)用,能綜合運(yùn)用性質(zhì)進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強(qiáng),難度適中.20、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解題分析】分析:(Ⅰ)將拋物線的一般式配方為頂點(diǎn)式即可求出點(diǎn)C的坐標(biāo),聯(lián)立拋物線與直線的解析式即可求出A、B的坐標(biāo).(Ⅱ)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),然后求出直線AC的解析式后,將點(diǎn)E的坐標(biāo)分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點(diǎn)F,連接CF,過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G,由直線y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點(diǎn)G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點(diǎn)坐標(biāo)為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),設(shè)直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當(dāng)點(diǎn)E在直線AC上時(shí),﹣2(2﹣t)+1=1,解得:t=.當(dāng)點(diǎn)E在直線AD上時(shí),(2﹣t)+2=1,解得:t=5,∴當(dāng)點(diǎn)E在△DAC內(nèi)時(shí),<t<5;(III)如圖,直線AB與y軸交于點(diǎn)F,連接CF,過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G.由直線y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.∵點(diǎn)G在直線y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴點(diǎn)P在點(diǎn)G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在拋物線y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.∵﹣2<m<1,∴m=不合題意,舍去,∴m=,∴n=m+4=.點(diǎn)睛:本題是二次函數(shù)綜合題,涉及待定系數(shù)法,解方程,勾股定理,三角形的面積公式,綜合程度較高,需要學(xué)生綜合運(yùn)用所學(xué)知識(shí).21、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解題分析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;(3)方法1、先判斷出MN最大時(shí),△PMN的面積最大,進(jìn)而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.方法2、先判斷出BD最大時(shí),△PMN的面積最大,而BD最大是AB+AD=14,即可.【題目詳解】解:(1)∵點(diǎn)P,N是BC,CD的中點(diǎn),∴PN∥BD,PN=BD,∵點(diǎn)P,M是CD,DE的中點(diǎn),∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案為:PM=PN,PM⊥PN,(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大時(shí),△PMN的面積最大,∴DE∥BC且DE在頂點(diǎn)A上面,∴MN最大=AM+AN,連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大時(shí),△PMN面積最大,∴點(diǎn)D在BA的延長(zhǎng)線上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【題目點(diǎn)撥】本題考查旋轉(zhuǎn)中的三角形,關(guān)鍵在于對(duì)三角形的所有知識(shí)點(diǎn)熟練掌握.22、(1);(2)見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論