2024屆浙江省慈溪市新城中學中考沖刺卷數(shù)學試題含解析2_第1頁
2024屆浙江省慈溪市新城中學中考沖刺卷數(shù)學試題含解析2_第2頁
2024屆浙江省慈溪市新城中學中考沖刺卷數(shù)學試題含解析2_第3頁
2024屆浙江省慈溪市新城中學中考沖刺卷數(shù)學試題含解析2_第4頁
2024屆浙江省慈溪市新城中學中考沖刺卷數(shù)學試題含解析2_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024學年浙江省慈溪市新城中學中考沖刺卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關系的圖象是()A. B. C. D.2.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.3.若方程x2﹣3x﹣4=0的兩根分別為x1和x2,則+的值是()A.1 B.2 C.﹣ D.﹣4.如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數(shù)量關系為()A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=15.全球芯片制造已經(jīng)進入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣106.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE7.在下列交通標志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.8.已知a=(+1)2,估計a的值在()A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間9.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數(shù)點后兩位)(參考數(shù)據(jù):3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里10.下列關于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.a(chǎn)x2+bx+c=0二、填空題(共7小題,每小題3分,滿分21分)11.在平面直角坐標系xOy中,點A、B為反比例函數(shù)(x>0)的圖象上兩點,A點的橫坐標與B點的縱坐標均為1,將(x>0)的圖象繞原點O順時針旋轉(zhuǎn)90°,A點的對應點為A′,B點的對應點為B′.此時點B′的坐標是_____.12.如圖,AB∥CD,BE交CD于點D,CE⊥BE于點E,若∠B=34°,則∠C的大小為________度.13.若關于x的方程(k﹣1)x2﹣4x﹣5=0有實數(shù)根,則k的取值范圍是_____.14.若關于的不等式組無解,則的取值范圍是________.15.如果a+b=2,那么代數(shù)式(a﹣)÷的值是______.16.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.17.如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對邊BC相切,將矩形紙片ABCD沿DE折疊,使點A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為_______.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標系xOy中,對于P,Q兩點給出如下定義:若點P到兩坐標軸的距離之和等于點Q到兩坐標軸的距離之和,則稱P,Q兩點為同族點.下圖中的P,Q兩點即為同族點.(1)已知點A的坐標為(﹣3,1),①在點R(0,4),S(2,2),T(2,﹣3)中,為點A的同族點的是;②若點B在x軸上,且A,B兩點為同族點,則點B的坐標為;(2)直線l:y=x﹣3,與x軸交于點C,與y軸交于點D,①M為線段CD上一點,若在直線x=n上存在點N,使得M,N兩點為同族點,求n的取值范圍;②M為直線l上的一個動點,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,直接寫出m的取值范圍.19.(5分)如圖,BD⊥AC于點D,CE⊥AB于點E,AD=AE.求證:BE=CD.20.(8分)如圖,在Rt中,,分別以點A、C為圓心,大于長為半徑畫弧,兩弧相交于點M、N,連結MN,與AC、BC分別交于點D、E,連結AE.(1)求;(直接寫出結果)(2)當AB=3,AC=5時,求的周長.21.(10分)“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學生,調(diào)查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結合圖中所給信息解答下列問題:(1)本次共調(diào)查名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是;(2)補全條形統(tǒng)計圖;(3)該校共有800名學生,根據(jù)以上信息,請你估計全校學生中對這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調(diào)查,數(shù)學課外實踐小組的學生對交通法規(guī)有了更多的認識,學校準備從組內(nèi)的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.22.(10分)計算:27﹣(﹣2)0+|1﹣3|+2cos30°.23.(12分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.24.(14分)如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點,中柱CD=1米,∠A=27°,求跨度AB的長(精確到0.01米).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關系變?yōu)橄瓤旌舐绢}目詳解】根據(jù)題意和圖形的形狀,可知水的最大深度h與時間t之間的關系分為兩段,先快后慢。故選:C.【題目點撥】此題考查函數(shù)的圖象,解題關鍵在于觀察圖形2、C【解題分析】

由平面圖形的折疊及正方形的展開圖結合本題選項,一一求證解題.【題目詳解】解:A、B、D都是正方體的展開圖,故選項錯誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【題目點撥】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題3、C【解題分析】試題分析:找出一元二次方程的系數(shù)a,b及c的值,利用根與系數(shù)的關系求出兩根之和與兩根之積,然后利用異分母分式的變形,將求出的兩根之和x1+x2=3與兩根之積x1?x2=﹣4代入,即可求出=.故選C.考點:根與系數(shù)的關系4、B【解題分析】試題分析:根據(jù)作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.5、C【解題分析】

本題根據(jù)科學記數(shù)法進行計算.【題目詳解】因為科學記數(shù)法的標準形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學記數(shù)法法可表示為7×,故選C.【題目點撥】本題主要考察了科學記數(shù)法,熟練掌握科學記數(shù)法是本題解題的關鍵.6、A【解題分析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【題目詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據(jù)AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【題目點撥】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.7、C【解題分析】

根據(jù)軸對稱圖形和中心對稱圖形的定義進行分析即可.【題目詳解】A、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故此選項正確;D、是軸對稱圖形,但不是中心對稱圖形.故此選項錯誤.故選C.【題目點撥】考點:1、中心對稱圖形;2、軸對稱圖形8、D【解題分析】

首先計算平方,然后再確定的范圍,進而可得4+的范圍.【題目詳解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之間,故選D.【題目點撥】此題主要考查了估算無理數(shù)的大小,用有理數(shù)逼近無理數(shù),求無理數(shù)的近似值.9、B【解題分析】

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【題目詳解】根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15【題目點撥】本題考查了三角形內(nèi)角和定理與等腰直角三角形的性質(zhì),解題的關鍵是熟練的掌握三角形內(nèi)角和定理與等腰直角三角形的性質(zhì).10、B【解題分析】

根據(jù)一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2進行分析即可.【題目詳解】A.未知數(shù)的最高次數(shù)不是2

,不是一元二次方程,故此選項錯誤;

B.

是一元二次方程,故此選項正確;

C.

未知數(shù)的最高次數(shù)是3,不是一元二次方程,故此選項錯誤;

D.

a=0時,不是一元二次方程,故此選項錯誤;

故選B.【題目點撥】本題考查一元二次方程的定義,解題的關鍵是明白:一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2.二、填空題(共7小題,每小題3分,滿分21分)11、(1,-4)【解題分析】

利用旋轉(zhuǎn)的性質(zhì)即可解決問題.【題目詳解】如圖,由題意A(1,4),B(4,1),A根據(jù)旋轉(zhuǎn)的性質(zhì)可知′(4,-1),B′(1,-4);

所以,B′(1,-4);故答案為(1,-4).【題目點撥】本題考查反比例函數(shù)的旋轉(zhuǎn)變換,解題的關鍵是靈活運用所學知識解決問題.12、56【解題分析】

解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.13、【解題分析】當k?1=0,即k=1時,原方程為?4x?5=0,解得:x=?,∴k=1符合題意;當k?1≠0,即k≠1時,有,解得:k?且k≠1.綜上可得:k的取值范圍為k?.故答案為k?.14、【解題分析】

首先解每個不等式,然后根據(jù)不等式無解,即兩個不等式的解集沒有公共解即可求得.【題目詳解】,

解①得:x>a+3,

解②得:x<1.

根據(jù)題意得:a+3≥1,

解得:a≥-2.

故答案是:a≥-2.【題目點撥】本題考查了一元一次不等式組的解,解題的關鍵是熟練掌握解一元一次不等式組的步驟..15、2【解題分析】分析:根據(jù)分式的運算法則即可求出答案.詳解:當a+b=2時,原式===a+b=2故答案為:2點睛:本題考查分式的運算,解題的關鍵熟練運用分式的運算法則,本題屬于基礎題型.16、【解題分析】

設AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【題目詳解】設AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關系有,解得,故當時,取得最大值,

故答案為:.【題目點撥】本題主要考查了余弦定理和面積公式在解三角形中的應用,考查了二次函數(shù)的性質(zhì),考查了計算能力,當涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.17、【解題分析】

解:如圖,作OH⊥DK于H,連接OK,∵以AD為直徑的半圓,正好與對邊BC相切,∴AD=2CD.∴根據(jù)折疊對稱的性質(zhì),A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面積為.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面積為.∴半圓還露在外面的部分(陰影部分)的面積是:.故答案為:.三、解答題(共7小題,滿分69分)18、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解題分析】

(1)∵點A的坐標為(?2,1),∴2+1=4,點R(0,4),S(2,2),T(2,?2)中,0+4=4,2+2=4,2+2=5,∴點A的同族點的是R,S;故答案為R,S;②∵點B在x軸上,∴點B的縱坐標為0,設B(x,0),則|x|=4,∴x=±4,∴B(?4,0)或(4,0);故答案為(?4,0)或(4,0);(2)①由題意,直線與x軸交于C(2,0),與y軸交于D(0,).點M在線段CD上,設其坐標為(x,y),則有:,,且.點M到x軸的距離為,點M到y(tǒng)軸的距離為,則.∴點M的同族點N滿足橫縱坐標的絕對值之和為2.即點N在右圖中所示的正方形CDEF上.∵點E的坐標為(,0),點N在直線上,∴.②如圖,設P(m,0)為圓心,為半徑的圓與直線y=x?2相切,∴PC=2,∴OP=1,觀察圖形可知,當m≥1時,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,再根據(jù)對稱性可知,m≤也滿足條件,∴滿足條件的m的范圍:m≤或m≥119、證明過程見解析【解題分析】

要證明BE=CD,只要證明AB=AC即可,由條件可以求得△AEC和△ADB全等,從而可以證得結論.【題目詳解】∵BD⊥AC于點D,CE⊥AB于點E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考點:全等三角形的判定與性質(zhì).20、(1)∠ADE=90°;(2)△ABE的周長=1.【解題分析】試題分析:(1)是線段垂直平分線的做法,可得∠ADE=90°(2)根據(jù)勾股定理可求得BC=4,由垂直平分線的性質(zhì)可知AE=CE,所以△ABE的周長為AB+BE+AE=AB+BC=1試題解析:(1)∵由題意可知MN是線段AC的垂直平分線,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是線段AC的垂直平分線,∴AE=CE,∴△ABE的周長=AB+(AE+BE)=AB+BC=3+4=1.考點:1、尺規(guī)作圖;2、線段垂直平分線的性質(zhì);3、勾股定理;4、三角形的周長21、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學生中對這些交通法規(guī)“非常了解”的有320名;(4)甲和乙兩名學生同時被選中的概率為.【解題分析】【分析】(1)用A的人數(shù)以及所占的百分比就可以求出調(diào)查的總人數(shù),用C的人數(shù)除以調(diào)查的總人數(shù)后再乘以360度即可得;(2)根據(jù)D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補全條形統(tǒng)計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【題目詳解】(1)本次調(diào)查的學生總人數(shù)為24÷40%=60人,扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是360°×=90°,故答案為60、90°;(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+15+3)=18,補全條形圖如下:(3)估計全校學生中對這些交通法規(guī)“非常了解”的有800×40%=320名;(4)畫樹狀圖為:共有12種等可能的結果數(shù),其中甲和乙兩名學生同時被選中的結果數(shù)為2,所以甲和乙兩名學生同時被選中的概率為.【題目點撥】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、列表法或樹狀圖法求概率、用樣本估計總體等,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中找到必要的有關聯(lián)的信息進行解題是關鍵.22、53【解題分析】

(1)原式利用二次根式的性質(zhì),零指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值進行化簡即可得到結果.【題目詳解】原式=33=33=53【題目點撥】此題考查了實數(shù)的運算,熟練掌握運算法則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論