2024屆廣東省韶關(guān)市樂昌市中考數(shù)學模擬精編試卷含解析_第1頁
2024屆廣東省韶關(guān)市樂昌市中考數(shù)學模擬精編試卷含解析_第2頁
2024屆廣東省韶關(guān)市樂昌市中考數(shù)學模擬精編試卷含解析_第3頁
2024屆廣東省韶關(guān)市樂昌市中考數(shù)學模擬精編試卷含解析_第4頁
2024屆廣東省韶關(guān)市樂昌市中考數(shù)學模擬精編試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆廣東省韶關(guān)市樂昌市中考數(shù)學模擬精編試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長為()A.1 B.2 C.3 D.42.計算1+2+22+23+…+22010的結(jié)果是()A.22011–1 B.22011+1C. D.3.點A(-2,5)關(guān)于原點對稱的點的坐標是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)4.在下列交通標志中,是中心對稱圖形的是()A. B.C. D.5.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.6.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°7.如圖,AB是⊙O的弦,半徑OC⊥AB于D,若CD=2,⊙O的半徑為5,那么AB的長為()A.3 B.4 C.6 D.88.把a?的根號外的a移到根號內(nèi)得()A. B.﹣ C.﹣ D.9.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.6010.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知點P(1,2)關(guān)于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.12.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為_____.13.已知二次函數(shù)與一次函數(shù)的圖象相交于點,如圖所示,則能使成立的x的取值范圍是______.14.同時拋擲兩枚質(zhì)地均勻的硬幣,則兩枚硬幣全部正面向上的概率是.15.已知雙曲線經(jīng)過點(-1,2),那么k的值等于_______.16.如圖,在矩形ABCD中,對角線BD的長為1,點P是線段BD上的一點,聯(lián)結(jié)CP,將△BCP沿著直線CP翻折,若點B落在邊AD上的點E處,且EP//AB,則AB的長等于________.17.當2≤x≤5時,二次函數(shù)y=﹣(x﹣1)2+2的最大值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,四邊形AOBC是正方形,點C的坐標是(4,0).正方形AOBC的邊長為,點A的坐標是.將正方形AOBC繞點O順時針旋轉(zhuǎn)45°,點A,B,C旋轉(zhuǎn)后的對應點為A′,B′,C′,求點A′的坐標及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當它們相遇時同時停止運動,當△OPQ為等腰三角形時,求出t的值(直接寫出結(jié)果即可).19.(5分)如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.若∠ABC=70°,則∠NMA的度數(shù)是度.若AB=8cm,△MBC的周長是14cm.①求BC的長度;②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.20.(8分)如圖,正方形ABCD中,M為BC上一點,F(xiàn)是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長.21.(10分)一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為S(km),y1,y2與x的函數(shù)關(guān)系圖象如圖①所示,S與x的函數(shù)關(guān)系圖象如圖②所示:(1)圖中的a=______,b=______.(2)求快車在行駛的過程中S關(guān)于x的函數(shù)關(guān)系式.(3)直接寫出兩車出發(fā)多長時間相距200km?22.(10分)在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(0,4),B(2,0),C(-2,0)三點.(1)求二次函數(shù)的表達式;(2)在x軸上有一點D(-4,0),將二次函數(shù)的圖象沿射線DA方向平移,使圖象再次經(jīng)過點B.①求平移后圖象頂點E的坐標;②直接寫出此二次函數(shù)的圖象在A,B兩點之間(含A,B兩點)的曲線部分在平移過程中所掃過的面積.23.(12分)先化簡,再求值:(m+2﹣)?,其中m=﹣.24.(14分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】試題分析:由角平分線和線段垂直平分線的性質(zhì)可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考點:線段垂直平分線的性質(zhì)2、A【解題分析】

可設其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【題目詳解】設S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【題目點撥】本題考查了因式分解的應用;設出和為S,并求出2S進行做差求解是解題關(guān)鍵.3、B【解題分析】

根據(jù)平面直角坐標系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y).【題目詳解】根據(jù)中心對稱的性質(zhì),得點P(?2,5)關(guān)于原點對稱點的點的坐標是(2,?5).故選:B.【題目點撥】考查關(guān)于原點對稱的點的坐標特征,平面直角坐標系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y).4、C【解題分析】

解:A圖形不是中心對稱圖形;B不是中心對稱圖形;C是中心對稱圖形,也是軸對稱圖形;D是軸對稱圖形;不是中心對稱圖形故選C5、D【解題分析】

根據(jù)中心對稱圖形的概念求解.【題目詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【題目點撥】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.6、B【解題分析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.7、D【解題分析】

連接OA,構(gòu)建直角三角形AOD;利用垂徑定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的長度,從而求得AB=2AD=1.【題目詳解】連接OA.∵⊙O的半徑為5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=AB;在直角三角形ODC中,根據(jù)勾股定理,得AD==4,∴AB=1.故選D.【題目點撥】本題考查了垂徑定理、勾股定理.解答該題的關(guān)鍵是通過作輔助線OA構(gòu)建直角三角形,在直角三角形中利用勾股定理求相關(guān)線段的長度.8、C【解題分析】

根據(jù)二次根式有意義的條件可得a<0,原式變形為﹣(﹣a)?,然后利用二次根式的性質(zhì)得到,再把根號內(nèi)化簡即可.【題目詳解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)?,=,=﹣.故選C.【題目點撥】本題考查的是二次根式的化簡,主要是判斷根號有意義的條件,然后確定值的范圍再進行化簡,是??碱}型.9、B【解題分析】

有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【題目詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【題目點撥】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.10、D【解題分析】

過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【題目詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應角相等;三角函數(shù)的定義及三角函數(shù)值的求法.二、填空題(共7小題,每小題3分,滿分21分)11、y=﹣1x+1.【解題分析】

由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【題目詳解】∵點P(1,2)關(guān)于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數(shù)圖象與幾何變換.12、(,0)【解題分析】試題解析:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故答案為(,0).13、x<-2或x>1【解題分析】試題分析:根據(jù)函數(shù)圖象可得:當時,x<-2或x>1.考點:函數(shù)圖象的性質(zhì)14、.【解題分析】試題分析:畫樹狀圖為:共有4種等可能的結(jié)果數(shù),其中兩枚硬幣全部正面向上的結(jié)果數(shù)為1,所以兩枚硬幣全部正面向上的概率=.故答案為.考點:列表法與樹狀圖法.15、-1【解題分析】

分析:根據(jù)點在曲線上點的坐標滿足方程的關(guān)系,將點(-1,2)代入,得:,解得:k=-1.16、【解題分析】

設CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進而得出PE=a2,再根據(jù)△DEP∽△DAB,即可得到,即,可得,即可得到AB的長等于.【題目詳解】如圖,設CD=AB=a,則BC2=BD2-CD2=1-a2,

由折疊可得,CE=BC,BP=EP,

∴CE2=1-a2,

∴Rt△CDE中,DE2=CE2-CD2=1-2a2,

∵PE∥AB,∠A=90°,

∴∠PED=90°,

∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,

∴PE=a2,

∵PE∥AB,

∴△DEP∽△DAB,

∴,即,

∴,

即a2+a-1=0,

解得(舍去),

∴AB的長等于AB=.故答案為.17、1.【解題分析】

先根據(jù)二次函數(shù)的圖象和性質(zhì)判斷出2≤x≤5時的增減性,然后再找最大值即可.【題目詳解】對稱軸為∵a=﹣1<0,∴當x>1時,y隨x的增大而減小,∴當x=2時,二次函數(shù)y=﹣(x﹣1)2+2的最大值為1,故答案為:1.【題目點撥】本題主要考查二次函數(shù)在一定范圍內(nèi)的最大值,掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)4,;(2)旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為;(3).【解題分析】

(1)連接AB,根據(jù)△OCA為等腰三角形可得AD=OD的長,從而得出點A的坐標,則得出正方形AOBC的面積;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA′的長,從而得出A′C,A′E,再求出面積即可;

(3)根據(jù)P、Q點在不同的線段上運動情況,可分為三種列式①當點P、Q分別在OA、OB時,②當點P在OA上,點Q在BC上時,③當點P、Q在AC上時,可方程得出t.【題目詳解】解:(1)連接AB,與OC交于點D,四邊形是正方形,

∴△OCA為等腰Rt△,∴AD=OD=OC=2,

∴點A的坐標為.4,.(2)如圖∵四邊形是正方形,∴,.∵將正方形繞點順時針旋轉(zhuǎn),∴點落在軸上.∴.∴點的坐標為.∵,∴.∵四邊形,是正方形,∴,.∴,.∴.∴.∵,,∴.∴旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為.(3)設t秒后兩點相遇,3t=16,∴t=①當點P、Q分別在OA、OB時,∵,OP=t,OQ=2t∴不能為等腰三角形②當點P在OA上,點Q在BC上時如圖2,當OQ=QP,QM為OP的垂直平分線,

OP=2OM=2BQ,OP=t,BQ=2t-4,

t=2(2t-4),

解得:t=.③當點P、Q在AC上時,不能為等腰三角形綜上所述,當時是等腰三角形【題目點撥】此題考查了正方形的性質(zhì),等腰三角形的判定以及旋轉(zhuǎn)的性質(zhì),是中考壓軸題,綜合性較強,難度較大.19、(1)50;(2)①6;②1【解題分析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)和線段垂直平分線的性質(zhì)即可得到結(jié)論;(2)①根據(jù)線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì)可得AM=BM,然后求出△MBC的周長=AC+BC,再代入數(shù)據(jù)進行計算即可得解;②當點P與M重合時,△PBC周長的值最小,于是得到結(jié)論.試題解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分線交AB于點N,∴∠ANM=90°,∴∠NMA=50°.故答案為50;(2)①∵MN是AB的垂直平分線,∴AM=BM,∴△MBC的周長=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周長是1,∴BC=1﹣8=6;②當點P與M重合時,△PBC周長的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P與M重合時,PA+PC=AC,此時PB+PC最小,∴△PBC周長的最小值=AC+BC=8+6=1.20、(1)見解析;(2)4.1【解題分析】

試題分析:(1)由正方形的性質(zhì)得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結(jié)論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中點,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.1,∴DE=AE-AD=4.1.考點:1.相似三角形的判定與性質(zhì);2.正方形的性質(zhì).21、(1)a=6,b=;(2);(3)或5h【解題分析】

(1)根據(jù)S與x之間的函數(shù)關(guān)系式可以得到當位于C點時,兩人之間的距離增加變緩,此時快車到站,指出此時a的值即可,求得a的值后求出兩車相遇時的時間即為b的值;(2)根據(jù)函數(shù)的圖像可以得到A、B、C、D的點的坐標,利用待定系數(shù)法求得函數(shù)的解析式即可.(3)分兩車相遇前和兩車相遇后兩種情況討論,當相遇前令s=200即可求得x的值.【題目詳解】解:(1)由s與x之間的函數(shù)的圖像可知:當位于C點時,兩車之間的距離增加變緩,由此可以得到a=6,∵快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,∴;(2)∵從函數(shù)的圖象上可以得到A、B、C、D點的坐標分別為:(0,600)、(,0)、(6,360)、(10,600),∴設線段AB所在直線解析式為:S=kx+b,∴解得:k=-160,b=600,設線段BC所在的直線的解析式為:S=kx+b,∴解得:k=160,b=-600,設直線CD的解析式為:S=kx+b,解得:k=60,b=0∴(3)當兩車相遇前相距200km,此時:S=-160x+600=200,解得:,當兩車相遇后相距200km,此時:S=160x-600=200,解得:x=5,∴或5時兩車相距200千米【題目點撥】本題考查了一次函數(shù)的綜合知識,特別是本題中涉及到了分段函數(shù)的知識,解題時主要自變量的取值范圍.22、(1)y=﹣x2+4;(2)①E(5,9);②1.【解題分析】

(1)待定系數(shù)法即可解題,(2)①求出直線DA的解析式,根據(jù)頂點E在直線DA上,設出E的坐標,帶入即可求解;②AB掃過的面積是平行四邊形ABGE,根據(jù)S四邊形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出點B(2,0),G(7,5),A(0,4),E(5,9),根據(jù)坐標幾何含義即可解題.【題目詳解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函數(shù)的圖象的頂點為A(0,4),∴設二次函數(shù)表達式為y=ax2+4,將B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函數(shù)表達式y(tǒng)=﹣x2+4;(2)①設直線DA:y=kx+b(k≠0),將A(0,4),D(﹣4,0)代入,得,解得,,∴直線DA:y=x+4,由題意可知,平移后的拋物線的頂點E在直線DA上,∴設頂點E(m,m+4),∴平移后的拋物線表達式為y=﹣(x﹣m)2+m+4,又∵平移后的拋物線過點B(2,0),∴將其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合題意,舍去),∴頂點E(5,9),②如圖,連接AB,過點B作BL∥AD交平移后的拋物線于點G,連結(jié)EG,∴四邊形ABGE的面積就是圖象

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論