版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)學(xué)??贾R(shí)點(diǎn)三角函數(shù)應(yīng)用1.兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=2.倍角公式tan2A=Sin2A=2SinA?CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A3.三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana·tan(+a)·tan(-a)3.半角公式sin()=cos()=tan()=cot()=tan()==4.和差化積sina+sinb=2sincossina-sinb=2cossincosa+cosb=2coscoscosa-cosb=-2sinsin5.積化和差sinasinb=-[cos(a+b)-cos(a-b)]cosacosb=[cos(a+b)+cos(a-b)]sinacosb=[sin(a+b)+sin(a-b)]cosasinb=[sin(a+b)-sin(a-b)]6.誘導(dǎo)公式sin(-a)=-sinacos(-a)=cosasin(-a)=cosacos(-a)=sinasin(+a)=cosacos(+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatanA=7.萬(wàn)能公式sina=cosa=tana=8.旋轉(zhuǎn)設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα任意角α與-α的三角函數(shù)值之間的關(guān)系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα±α及±α與α的三角函數(shù)值之間的關(guān)系:sin(+α)=cosαcos(+α)=-sinαsin(-α)=cosαcos(-α)=sinαsin(+α)=-cosαcos(+α)=sinαsin(-α)=-cosαcos(-α)=-sinα(以上k∈Z)這個(gè)物理常用公式我費(fèi)了半天的勁才輸進(jìn)來(lái),希望對(duì)大家有用A?sin(ωt+θ)+B?sin(ωt+φ)=×數(shù)列的應(yīng)用§03.數(shù)列知識(shí)要點(diǎn)數(shù)列數(shù)列數(shù)列的定義數(shù)列的有關(guān)概念數(shù)列的通項(xiàng)數(shù)列與函數(shù)的關(guān)系項(xiàng)項(xiàng)數(shù)通項(xiàng)等差數(shù)列等差數(shù)列的定義等差數(shù)列等差數(shù)列的定義等差數(shù)列的通項(xiàng)等差數(shù)列的性質(zhì)等差數(shù)列的前n項(xiàng)和等比數(shù)列等比數(shù)列的定義等比數(shù)列的通項(xiàng)等比數(shù)列的性質(zhì)等比數(shù)列的前n項(xiàng)和等差數(shù)列等比數(shù)列定義遞推公式;;通項(xiàng)公式()中項(xiàng)()()前項(xiàng)和重要性質(zhì)⑴等差、等比數(shù)列:等差數(shù)列等比數(shù)列定義通項(xiàng)公式=+(n-1)d=+(n-k)d=+-d求和公式中項(xiàng)公式A=推廣:2=。推廣:性質(zhì)1若m+n=p+q則若m+n=p+q,則。2若成A.P(其中)則也為A.P。若成等比數(shù)列(其中),則成等比數(shù)列。3.成等差數(shù)列。成等比數(shù)列。4,5⑵看數(shù)列是不是等差數(shù)列有以下三種方法:①②2()③(為常數(shù)). ⑶看數(shù)列是不是等比數(shù)列有以下四種方法:①②(,)①注①:i.,是a、b、c成等比的雙非條件,即a、b、c等比數(shù)列.ii.(ac>0)→為a、b、c等比數(shù)列的充分不必要.iii.→為a、b、c等比數(shù)列的必要不充分.iv.且→為a、b、c等比數(shù)列的充要.注意:任意兩數(shù)a、c不一定有等比中項(xiàng),除非有ac>0,則等比中項(xiàng)一定有兩個(gè).③(為非零常數(shù)).④正數(shù)列{}成等比的充要條件是數(shù)列{}()成等比數(shù)列.⑷數(shù)列{}的前項(xiàng)和與通項(xiàng)的關(guān)系:[注]:①(可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若不為0,則是等差數(shù)列充分條件).②等差{}前n項(xiàng)和→可以為零也可不為零→為等差的充要條件→若為零,則是等差數(shù)列的充分條件;若不為零,則是等差數(shù)列的充分條件.③非零常數(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)2.①等差數(shù)列依次每k項(xiàng)的和仍成等差數(shù)列,其公差為原公差的k2倍;②若等差數(shù)列的項(xiàng)數(shù)為2,則;③若等差數(shù)列的項(xiàng)數(shù)為,則,且,.3.常用公式:①1+2+3…+n=②③[注]:熟悉常用通項(xiàng):9,99,999,…;5,55,555,….4.等比數(shù)列的前項(xiàng)和公式的常見(jiàn)應(yīng)用題:⑴生產(chǎn)部門(mén)中有增長(zhǎng)率的總產(chǎn)量問(wèn)題.例如,第一年產(chǎn)量為,年增長(zhǎng)率為,則每年的產(chǎn)量成等比數(shù)列,公比為.其中第年產(chǎn)量為,且過(guò)年后總產(chǎn)量為:⑵銀行部門(mén)中按復(fù)利計(jì)算問(wèn)題.例如:一年中每月初到銀行存元,利息為,每月利息按復(fù)利計(jì)算,則每月的元過(guò)個(gè)月后便成為元.因此,第二年年初可存款:=.⑶分期付款應(yīng)用題:為分期付款方式貸款為a元;m為m個(gè)月將款全部付清;為年利率.5.數(shù)列常見(jiàn)的幾種形式:⑴(p、q為二階常數(shù))用特證根方法求解.具體步驟:①寫(xiě)出特征方程(對(duì)應(yīng),x對(duì)應(yīng)),并設(shè)二根②若可設(shè),若可設(shè);③由初始值確定.⑵(P、r為常數(shù))用①轉(zhuǎn)化等差,等比數(shù)列;②逐項(xiàng)選代;③消去常數(shù)n轉(zhuǎn)化為的形式,再用特征根方法求;④(公式法),由確定.①轉(zhuǎn)化等差,等比:.②選代法:.③用特征方程求解:.④由選代法推導(dǎo)結(jié)果:.6.幾種常見(jiàn)的數(shù)列的思想方法:⑴等差數(shù)列的前項(xiàng)和為,在時(shí),有最大值.如何確定使取最大值時(shí)的值,有兩種方法:一是求使,成立的值;二是由利用二次函數(shù)的性質(zhì)求的值.⑵如果數(shù)列可以看作是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)乘積,求此數(shù)列前項(xiàng)和可依照等比數(shù)列前項(xiàng)和的推倒導(dǎo)方法:錯(cuò)位相減求和.例如:⑶兩個(gè)等差數(shù)列的相同項(xiàng)亦組成一個(gè)新的等差數(shù)列,此等差數(shù)列的首項(xiàng)就是原兩個(gè)數(shù)列的第一個(gè)相同項(xiàng),公差是兩個(gè)數(shù)列公差的最小公倍數(shù).2.判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法:(1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證為同一常數(shù)。(2)通項(xiàng)公式法。(3)中項(xiàng)公式法:驗(yàn)證都成立。3.在等差數(shù)列{}中,有關(guān)Sn的最值問(wèn)題:(1)當(dāng)>0,d<0時(shí),滿足的項(xiàng)數(shù)m使得取最大值.(2)當(dāng)<0,d>0時(shí),滿足的項(xiàng)數(shù)m使得取最小值。在解含絕對(duì)值的數(shù)列最值問(wèn)題時(shí),注意轉(zhuǎn)化思想的應(yīng)用。數(shù)列求和的常用方法1.公式法:適用于等差、等比數(shù)列或可轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列。2.裂項(xiàng)相消法:適用于其中{}是各項(xiàng)不為0的等差數(shù)列,c為常數(shù);部分無(wú)理數(shù)列、含階乘的數(shù)列等。3.錯(cuò)位相減法:適用于其中{}是等差數(shù)列,是各項(xiàng)不為0的等比數(shù)列。4.倒序相加法:類似于等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法.5.常用結(jié)論1):1+2+3+...+n=2)1+3+5+...+(2n-1)=3)4)5)6)3.集合的應(yīng)用一、集合的有關(guān)概念⒈定義:一般地,我們把研究對(duì)象統(tǒng)稱為元素,一些元素組成的總體叫集合,也簡(jiǎn)稱集。2.表示方法:集合通常用大括號(hào){}或大寫(xiě)的拉丁字母A,B,C…表示,而元素用小寫(xiě)的拉丁字母a,b,c…表示。3.集合相等:構(gòu)成兩個(gè)集合的元素完全一樣。4.元素與集合的關(guān)系:(元素與集合的關(guān)系有“屬于”及“不屬于兩種)⑴若a是集合A中的元素,則稱a屬于集合A,記作aA;⑵若a不是集合A的元素,則稱a不屬于集合A,記作aA。5.常用的數(shù)集及記法:非負(fù)整數(shù)集(或自然數(shù)集),記作N;正整數(shù)集,記作N*或N+;N內(nèi)排除0的集.整數(shù)集,記作Z;有理數(shù)集,記作Q;實(shí)數(shù)集,記作R;6.關(guān)于集合的元素的特征⑴確定性:給定一個(gè)集合,那么任何一個(gè)元素在不在這個(gè)集合中就確定了。如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中國(guó)古代四大發(fā)明”(造紙,印刷,火藥,指南針)可以構(gòu)成集合,其元素具有確定性;而“比較大的數(shù)”,“平面點(diǎn)P周圍的點(diǎn)”一般不構(gòu)成集合,因?yàn)榻M成它的元素是不確定的.⑵互異性:一個(gè)集合中的元素是互不相同的,即集合中的元素是不重復(fù)出現(xiàn)的。.如:方程(x-2)(x-1)2=0的解集表示為1,-2,而不是1,1,-2⑶無(wú)序性:即集合中的元素?zé)o順序,可以任意排列、調(diào)換。7.元素與集合的關(guān)系:(元素與集合的關(guān)系有“屬于”及“不屬于”兩種)⑴若a是集合A中的元素,則稱a屬于集合A,記作aA;⑵若a不是集合A的元素,則稱a不屬于集合A,記作aA。二、集合的表示方法⒈列舉法:把集合中的元素一一列舉出來(lái),并用花括號(hào)“”括起來(lái)表示集合的方法叫列舉法。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;說(shuō)明:⑴書(shū)寫(xiě)時(shí),元素與元素之間用逗號(hào)分開(kāi);⑵一般不必考慮元素之間的順序;⑶在表示數(shù)列之類的特殊集合時(shí),通常仍按慣用的次序;⑷集合中的元素可以為數(shù),點(diǎn),代數(shù)式等;⑸列舉法可表示有限集,也可以表示無(wú)限集。當(dāng)元素個(gè)數(shù)比較少時(shí)用列舉法比較簡(jiǎn)單;若集合中的元素較多或無(wú)限,但出現(xiàn)一定的規(guī)律性,在不發(fā)生誤解的情況下,也可以用列舉法表示。⑹對(duì)于含有較多元素的集合,用列舉法表示時(shí),必須把元素間的規(guī)律顯示清楚后方能用省略號(hào),象自然數(shù)集N用列舉法表示為⒉描述法:用集合所含元素的共同特征表示集合的方法,稱為描述法。。方法:在花括號(hào)內(nèi)先寫(xiě)上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫(huà)一條豎線,在豎線后寫(xiě)出這個(gè)集合中元素所具有的共同特征。一般格式:如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;用符號(hào)描述法表示集合時(shí)應(yīng)注意:1、弄清元素所具有的形式(即代表元素是什么)是數(shù)還是點(diǎn)、還是集合、還是其他形式?2、元素具有怎么的屬性?當(dāng)題目中用了其他字母來(lái)描述元素所具有的屬性時(shí),要去偽存真,而不能被表面的字母形式所迷惑。三、集合的分類集合的分類四、集合的基本關(guān)系⒈子集:對(duì)于兩個(gè)集合A,B,如果集合A的任何一個(gè)元素都是集合B的元素,我們說(shuō)這兩個(gè)集合有包含關(guān)系,稱集合A是集合B的子集(subset)。記作:讀作:A包含于B,或B包含ABA表示:當(dāng)集合A不包含于集合B時(shí),記作A?B(或BBA表示:用Venn圖表示兩個(gè)集合間的“包含”關(guān)系: ⒉集合相等定義:如果A是集合B的子集,且集合B是集合A的子集,則集合A與集合B中的元素是一樣的,因此集合A與集合B相等,即若,則。如:A={x|x=2m+1,mZ},B={x|x=2n-1,nZ},此時(shí)有A=B。⒊真子集定義:若集合,但存在元素,則稱集合A是集合B的真子集。記作:AB(或BA)讀作:A真包含于B(或B真包含A)4.空集定義:不含有任何元素的集合稱為空集。記作:5.幾個(gè)重要的結(jié)論:⑴空集是任何集合的子集;對(duì)于任意一個(gè)集合A都有A。⑵空集是任何非空集合的真子集;⑶任何一個(gè)集合是它本身的子集;⑷對(duì)于集合A,B,C,如果,且,那么。五、集合間的基本運(yùn)算;1.并集:一般地,由所有屬于集合A或?qū)儆诩螧的元素組成的集合,稱為集合A與集合B的并集,即A與B的所有部分,記作A∪B,讀作:A并B即A∪B={x|x∈A或x∈B}。Venn圖表示:交集定義:一般地,由屬于集合A且屬于集合B的所有元素組成的集合,叫作集合A、B的交集(intersectionset),記作:A∩B讀作:A交B即:A∩B={x|x∈A,且x∈B}(陰影部分即為A與B的交集)(陰影部分即為A與B的交集)Venn圖表示:常見(jiàn)的五種交集的情況:ABA(B)BAAABA(B)BAABBA4.全集的定義:一般地,如果一個(gè)集合含有我們所研究問(wèn)題中涉及的所有元素,那么就稱這個(gè)集合為全集,記作U,是相對(duì)于所研究問(wèn)題而言的一個(gè)相對(duì)概念。5.補(bǔ)集的定義:對(duì)于一個(gè)集合A,由全集U中不屬于集合A的所有元素組成的集合,叫作集合A相對(duì)于全集U的補(bǔ)集,記作:,讀作:A在U中的補(bǔ)集,即Venn圖表示:(陰影部分即為A在全集U中的補(bǔ)集)補(bǔ)充:集合中元素的個(gè)數(shù)在研究集合時(shí),經(jīng)常遇到有關(guān)集合中元素的個(gè)數(shù)問(wèn)題。我們把含有有限個(gè)元素的集合A叫做有限集,用card(A)表示集合A中元素的個(gè)數(shù)。例如:集合A={a,b,c}中有三個(gè)元素,我們記作card(A)=3.結(jié)論:已知兩個(gè)有限集合A,B,有:card(A∪B)=card(A)+card(B)-card(A∩B).一個(gè)集合當(dāng)中有N個(gè)元素,那么該集合的子集有2N個(gè),真子集有2N-1個(gè),非空真子集有2N-2個(gè)平面向量的應(yīng)用知識(shí)點(diǎn)歸納一.向量的基本概念與基本運(yùn)算1、向量的概念:①向量:既有大小又有方向的量向量不能比較大小,但向量的??梢员容^大小.②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行③單位向量:模為1個(gè)單位長(zhǎng)度的向量④平行向量(共線向量):方向相同或相反的非零向量⑤相等向量:長(zhǎng)度相等且方向相同的向量2、向量加法:設(shè),則+==(1);(2)向量加法滿足交換律與結(jié)合律;,但這時(shí)必須“首尾相連”.3、向量的減法:①相反向量:與長(zhǎng)度相等、方向相反的向量,叫做的相反向量②向量減法:向量加上的相反向量叫做與的差,③作圖法:可以表示為從的終點(diǎn)指向的終點(diǎn)的向量(、有共同起點(diǎn))4、實(shí)數(shù)與向量的積:實(shí)數(shù)λ與向量的積是一個(gè)向量,記作λ,它的長(zhǎng)度與方向規(guī)定如下:(Ⅰ);(Ⅱ)當(dāng)時(shí),λ的方向與的方向相同;當(dāng)時(shí),λ的方向與的方向相反;當(dāng)時(shí),,方向是任意的5、兩個(gè)向量共線定理:向量與非零向量共線有且只有一個(gè)實(shí)數(shù),使得=6、平面向量的基本定理:如果是一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對(duì)這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)使:,其中不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底二.平面向量的坐標(biāo)表示1平面向量的坐標(biāo)表示:平面內(nèi)的任一向量可表示成,記作=(x,y)。2平面向量的坐標(biāo)運(yùn)算:若,則若,則若=(x,y),則=(x,y)若,則若,則若,則三.平面向量的數(shù)量積1兩個(gè)向量的數(shù)量積:已知兩個(gè)非零向量與,它們的夾角為,則·=︱︱·︱︱cos叫做與的數(shù)量積(或內(nèi)積)規(guī)定2向量的投影:︱︱cos=∈R,稱為向量在方向上的投影投影的絕對(duì)值稱為射影3數(shù)量積的幾何意義:·等于的長(zhǎng)度與在方向上的投影的乘積4向量的模與平方的關(guān)系:5乘法公式成立:;6平面向量數(shù)量積的運(yùn)算律:①交換律成立:②對(duì)實(shí)數(shù)的結(jié)合律成立:③分配律成立:特別注意:(1)結(jié)合律不成立:;(2)消去律不成立不能得到(3)=0不能得到=或=7兩個(gè)向量的數(shù)量積的坐標(biāo)運(yùn)算:已知兩個(gè)向量,則·=8向量的夾角:已知兩個(gè)非零向量與,作=,=,則∠AOB=()叫做向量與的夾角cos==當(dāng)且僅當(dāng)兩個(gè)非零向量與同方向時(shí),θ=00,當(dāng)且僅當(dāng)與反方向時(shí)θ=1800,同時(shí)與其它任何非零向量之間不談夾角這一問(wèn)題9垂直:如果與的夾角為900則稱與垂直,記作⊥10兩個(gè)非零向量垂直的充要條件:⊥·=O平面向量數(shù)量積的性質(zhì)圓錐曲線的應(yīng)用圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。若為橢圓上任意一點(diǎn),則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點(diǎn)在x軸上)或()(焦點(diǎn)在y軸上)。注:①以上方程中的大小,其中;②在和兩個(gè)方程中都有的條件,要分清焦點(diǎn)的位置,只要看和的分母的大小。例如橢圓(,,)當(dāng)時(shí)表示焦點(diǎn)在軸上的橢圓;當(dāng)時(shí)表示焦點(diǎn)在軸上的橢圓。(2)橢圓的性質(zhì)①范圍:由標(biāo)準(zhǔn)方程知,,說(shuō)明橢圓位于直線,所圍成的矩形里;②對(duì)稱性:在曲線方程里,若以代替方程不變,所以若點(diǎn)在曲線上時(shí),點(diǎn)也在曲線上,所以曲線關(guān)于軸對(duì)稱,同理,以代替方程不變,則曲線關(guān)于軸對(duì)稱。若同時(shí)以代替,代替方程也不變,則曲線關(guān)于原點(diǎn)對(duì)稱。所以,橢圓關(guān)于軸、軸和原點(diǎn)對(duì)稱。這時(shí),坐標(biāo)軸是橢圓的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,橢圓的對(duì)稱中心叫橢圓的中心;③頂點(diǎn):確定曲線在坐標(biāo)系中的位置,常需要求出曲線與軸、軸的交點(diǎn)坐標(biāo)。在橢圓的標(biāo)準(zhǔn)方程中,令,得,則,是橢圓與軸的兩個(gè)交點(diǎn)。同理令得,即,是橢圓與軸的兩個(gè)交點(diǎn)。所以,橢圓與坐標(biāo)軸的交點(diǎn)有四個(gè),這四個(gè)交點(diǎn)叫做橢圓的頂點(diǎn)。同時(shí),線段、分別叫做橢圓的長(zhǎng)軸和短軸,它們的長(zhǎng)分別為和,和分別叫做橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)。由橢圓的對(duì)稱性知:橢圓的短軸端點(diǎn)到焦點(diǎn)的距離為;在中,,,,且,即;④離心率:橢圓的焦距與長(zhǎng)軸的比叫橢圓的離心率。∵,∴,且越接近,就越接近,從而就越小,對(duì)應(yīng)的橢圓越扁;反之,越接近于,就越接近于,從而越接近于,這時(shí)橢圓越接近于圓。當(dāng)且僅當(dāng)時(shí),,兩焦點(diǎn)重合,圖形變?yōu)閳A,方程為。2.雙曲線(1)雙曲線的概念平面上與兩點(diǎn)距離的差的絕對(duì)值為非零常數(shù)的動(dòng)點(diǎn)軌跡是雙曲線()。注意:①式中是差的絕對(duì)值,在條件下;時(shí)為雙曲線的一支;時(shí)為雙曲線的另一支(含的一支);②當(dāng)時(shí),表示兩條射線;③當(dāng)時(shí),不表示任何圖形;④兩定點(diǎn)叫做雙曲線的焦點(diǎn),叫做焦距。(2)雙曲線的性質(zhì)①范圍:從標(biāo)準(zhǔn)方程,看出曲線在坐標(biāo)系中的范圍:雙曲線在兩條直線的外側(cè)。即,即雙曲線在兩條直線的外側(cè)。②對(duì)稱性:雙曲線關(guān)于每個(gè)坐標(biāo)軸和原點(diǎn)都是對(duì)稱的,這時(shí),坐標(biāo)軸是雙曲線的對(duì)稱軸,原點(diǎn)是雙曲線的對(duì)稱中心,雙曲線的對(duì)稱中心叫做雙曲線的中心。③頂點(diǎn):雙曲線和對(duì)稱軸的交點(diǎn)叫做雙曲線的頂點(diǎn)。在雙曲線的方程里,對(duì)稱軸是軸,所以令得,因此雙曲線和軸有兩個(gè)交點(diǎn),他們是雙曲線的頂點(diǎn)。令,沒(méi)有實(shí)根,因此雙曲線和y軸沒(méi)有交點(diǎn)。1)注意:雙曲線的頂點(diǎn)只有兩個(gè),這是與橢圓不同的(橢圓有四個(gè)頂點(diǎn)),雙曲線的頂點(diǎn)分別是實(shí)軸的兩個(gè)端點(diǎn)。2)實(shí)軸:線段叫做雙曲線的實(shí)軸,它的長(zhǎng)等于叫做雙曲線的實(shí)半軸長(zhǎng)。虛軸:線段叫做雙曲線的虛軸,它的長(zhǎng)等于叫做雙曲線的虛半軸長(zhǎng)。④漸近線:注意到開(kāi)課之初所畫(huà)的矩形,矩形確定了兩條對(duì)角線,這兩條直線即稱為雙曲線的漸近線。從圖上看,雙曲線的各支向外延伸時(shí),與這兩條直線逐漸接近。⑤等軸雙曲線:1)定義:實(shí)軸和虛軸等長(zhǎng)的雙曲線叫做等軸雙曲線。定義式:;2)等軸雙曲線的性質(zhì):(1)漸近線方程為:;(2)漸近線互相垂直。注意以上幾個(gè)性質(zhì)與定義式彼此等價(jià)。亦即若題目中出現(xiàn)上述其一,即可推知雙曲線為等軸雙曲線,同時(shí)其他幾個(gè)亦成立。3)注意到等軸雙曲線的特征,則等軸雙曲線可以設(shè)為:,當(dāng)時(shí)交點(diǎn)在軸,當(dāng)時(shí)焦點(diǎn)在軸上。⑥注意與的區(qū)別:三個(gè)量中不同(互換)相同,還有焦點(diǎn)所在的坐標(biāo)軸也變了。3.拋物線(1)拋物線的概念平面內(nèi)與一定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線(定點(diǎn)F不在定直線l上)。定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線。方程叫做拋物線的標(biāo)準(zhǔn)方程。注意:它表示的拋物線的焦點(diǎn)在x軸的正半軸上,焦點(diǎn)坐標(biāo)是F(,0),它的準(zhǔn)線方程是;(2)拋物線的性質(zhì)一條拋物線,由于它在坐標(biāo)系的位置不同,方程也不同,有四種不同的情況,所以拋物線的標(biāo)準(zhǔn)方程還有其他幾種形式:,,.這四種拋物線的圖形、標(biāo)準(zhǔn)方程、焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程如下表:標(biāo)準(zhǔn)方程圖形焦點(diǎn)坐標(biāo)準(zhǔn)線方程范圍對(duì)稱性軸軸軸軸頂點(diǎn)離心率說(shuō)明:(1)通徑:過(guò)拋物線的焦點(diǎn)且垂直于對(duì)稱軸的弦稱為通徑;(2)拋物線的幾何性質(zhì)的特點(diǎn):有一個(gè)頂點(diǎn),一個(gè)焦點(diǎn),一條準(zhǔn)線,一條對(duì)稱軸,無(wú)對(duì)稱中心,沒(méi)有漸近線;(3)注意強(qiáng)調(diào)的幾何意義:是焦點(diǎn)到準(zhǔn)線的距離。4.高考數(shù)學(xué)圓錐曲線部分知識(shí)點(diǎn)梳理方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn),那么這個(gè)方程叫做曲線的方程;這條曲線叫做方程的曲線。點(diǎn)與曲線的關(guān)系:若曲線C的方程是f(x,y)=0,則點(diǎn)P0(x0,y0)在曲線C上f(x0,y0)=0;點(diǎn)P0(x0,y0)不在曲線C上f(x0,y0)≠0。兩條曲線的交點(diǎn):若曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則點(diǎn)P0(x0,y0)是C1,C2的交點(diǎn){方程組有n個(gè)不同的實(shí)數(shù)解,兩條曲線就有n個(gè)不同的交點(diǎn);方程組沒(méi)有實(shí)數(shù)解,曲線就沒(méi)有交點(diǎn)。橢圓雙曲線拋物線定義1.到兩定點(diǎn)F1,F2的距離之和為定值2a(2a>|F1F2|)的點(diǎn)的軌跡2.與定點(diǎn)和直線的距離之比為定值e的點(diǎn)的軌跡.(0<e<1)1.到兩定點(diǎn)F1,F2的距離之差的絕對(duì)值為定值2a(0<2a<|F1F2|)的點(diǎn)的軌跡2.與定點(diǎn)和直線的距離之比為定值e的點(diǎn)的軌跡.(e>1)與定點(diǎn)和直線的距離相等的點(diǎn)的軌跡.軌跡條件點(diǎn)集:({M||MF1+|MF2|=2a,|F1F2|<2a}.點(diǎn)集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.點(diǎn)集{M||MF|=點(diǎn)M到直線l的距離}.圖形方程標(biāo)準(zhǔn)方程(>0)(a>0,b>0)參數(shù)方程(t為參數(shù))范圍─axa,─byb|x|a,yRx0中心原點(diǎn)O(0,0)原點(diǎn)O(0,0)頂點(diǎn)(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)對(duì)稱軸x軸,y軸;長(zhǎng)軸長(zhǎng)2a,短軸長(zhǎng)2bx軸,y軸;實(shí)軸長(zhǎng)2a,虛軸長(zhǎng)2b.x軸焦點(diǎn)F1(c,0),F2(─c,0)F1(c,0),F2(─c,0)準(zhǔn)線x=±準(zhǔn)線垂直于長(zhǎng)軸,且在橢圓外.x=±準(zhǔn)線垂直于實(shí)軸,且在兩頂點(diǎn)的內(nèi)側(cè).x=-準(zhǔn)線與焦點(diǎn)位于頂點(diǎn)兩側(cè),且到頂點(diǎn)的距離相等.焦距2c(c=)2c(c=)離心率e=1二、圓:1、定義:點(diǎn)集{M||OM|=r},其中定點(diǎn)O為圓心,定長(zhǎng)r為半徑.2、方程:(1)標(biāo)準(zhǔn)方程:圓心在c(a,b),半徑為r的圓方程是(x-a)2+(y-b)2=r2圓心在坐標(biāo)原點(diǎn),半徑為r的圓方程是x2+y2=r2(2)一般方程:①當(dāng)D2+E2-4F>0時(shí),一元二次方程x2+y2+Dx+Ey+F=0叫做圓的一般方程,圓心為半徑是。配方,將方程x2+y2+Dx+Ey+F=0化為(x+)2+(y+)2=②當(dāng)D2+E2-4F=0時(shí),方程表示一個(gè)點(diǎn)(-,-);③當(dāng)D2+E2-4F<0時(shí),方程不表示任何圖形.點(diǎn)與圓的位置關(guān)系已知圓心C(a,b),半徑為r,點(diǎn)M的坐標(biāo)為(x0,y0),則|MC|<r點(diǎn)M在圓C內(nèi),|MC|=r點(diǎn)M在圓C上,|MC|>r點(diǎn)M在圓C內(nèi),其中|MC|=。直線和圓的位置關(guān)系:①直線和圓有相交、相切、相離三種位置關(guān)系:直線與圓相交有兩個(gè)公共點(diǎn);直線與圓相切有一個(gè)公共點(diǎn);直線與圓相離沒(méi)有公共點(diǎn)。②直線和圓的位置關(guān)系的判定:(i)判別式法;(ii)利用圓心C(a,b)到直線Ax+By+C=0的距離與半徑r的大小關(guān)系來(lái)判定。三、圓錐曲線的統(tǒng)一定義:平面內(nèi)的動(dòng)點(diǎn)P(x,y)到一個(gè)定點(diǎn)F(c,0)的距離與到不通過(guò)這個(gè)定點(diǎn)的一條定直線l的距離之比是一個(gè)常數(shù)e(e>0),則動(dòng)點(diǎn)的軌跡叫做圓錐曲線。其中定點(diǎn)F(c,0)稱為焦點(diǎn),定直線l稱為準(zhǔn)線,正常數(shù)e稱為離心率。當(dāng)0<e<1時(shí),軌跡為橢圓;當(dāng)e=1時(shí),軌跡為拋物線;當(dāng)e>1時(shí),軌跡為雙曲線。四、橢圓、雙曲線、拋物線:【備注1】雙曲線:⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.⑷共軛雙曲線:以已知雙曲線的虛軸為實(shí)軸,實(shí)軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.⑸共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時(shí),它的雙曲線方程可設(shè)為.【備注2】拋物線:(1)拋物線=2px(p>0)的焦點(diǎn)坐標(biāo)是(,0),準(zhǔn)線方程x=-,開(kāi)口向右;拋物線=-2px(p>0)的焦點(diǎn)坐標(biāo)是(-,0),準(zhǔn)線方程x=,開(kāi)口向左;拋物線=2py(p>0)的焦點(diǎn)坐標(biāo)是(0,),準(zhǔn)線方程y=-,開(kāi)口向上;拋物線=-2py(p>0)的焦點(diǎn)坐標(biāo)是(0,-),準(zhǔn)線方程y=,開(kāi)口向下.(2)拋物線=2px(p>0)上的點(diǎn)M(x0,y0)與焦點(diǎn)F的距離;拋物線=-2px(p>0)上的點(diǎn)M(x0,y0)與焦點(diǎn)F的距離(3)設(shè)拋物線的標(biāo)準(zhǔn)方程為=2px(p>0),則拋物線的焦點(diǎn)到其頂點(diǎn)的距離為,頂點(diǎn)到準(zhǔn)線的距離,焦點(diǎn)到準(zhǔn)線的距離為p.(4)已知過(guò)拋物線=2px(p>0)焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則線段AB稱為焦點(diǎn)弦,設(shè)A(x1,y1),B(x2,y2),則弦長(zhǎng)=+p或(α為直線AB的傾斜角),,(叫做焦半徑).五、坐標(biāo)的變換:(1)坐標(biāo)變換:在解析幾何中,把坐標(biāo)系的變換(如改變坐標(biāo)系原點(diǎn)的位置或坐標(biāo)軸的方向)叫做坐標(biāo)變換.實(shí)施坐標(biāo)變換時(shí),點(diǎn)的位置,曲線的形狀、大小、位置都不改變,僅僅只改變點(diǎn)的坐標(biāo)與曲線的方程.(2)坐標(biāo)軸的平移:坐標(biāo)軸的方向和長(zhǎng)度單位不改變,只改變?cè)c(diǎn)的位置,這種坐標(biāo)系的變換叫做坐標(biāo)軸的平移,簡(jiǎn)稱移軸。(3)坐標(biāo)軸的平移公式:設(shè)平面內(nèi)任意一點(diǎn)M,它在原坐標(biāo)系xOy中的坐標(biāo)是(x,y),在新坐標(biāo)系x′O′y′中的坐標(biāo)是.設(shè)新坐標(biāo)系的原點(diǎn)O′在原坐標(biāo)系xOy中的坐標(biāo)是(h,k),則或叫做平移(或移軸)公式.中心或頂點(diǎn)在(h,k)的圓錐曲線方程見(jiàn)下表:方程焦點(diǎn)焦線對(duì)稱軸橢圓+=1(±c+h,k)x=±+hx=hy=k+=1(h,±c+k)y=±+kx=hy=k雙曲線-=1(±c+h,k)x=±+kx=hy=k-=1(h,±c+h)y=±+kx=hy=k拋物線(y-k)2=2p(x-h)(+h,k)x=-+hy=k(y-k)2=-2p(x-h)(-+h,k)x=+hy=k(x-h)2=2p(y-k)(h,+k)y=-+kx=h(x-h)2=-2p(y-k)(h,-+k)y=+kx=h六、橢圓的常用結(jié)論:點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相離.以焦點(diǎn)半徑PF1為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切.若在橢圓上,則過(guò)的橢圓的切線方程是.若在橢圓外,則過(guò)作橢圓的兩條切線切點(diǎn)為P1、P2,則切點(diǎn)弦P1P2的直線方程是.橢圓(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為橢圓上任意一點(diǎn),則橢圓的焦點(diǎn)角形的面積為.橢圓(a>b>0)的焦半徑公式,(,).設(shè)過(guò)橢圓焦點(diǎn)F作直線與橢圓相交P、Q兩點(diǎn),A為橢圓長(zhǎng)軸上一個(gè)頂點(diǎn),連結(jié)AP和AQ分別交相應(yīng)于焦點(diǎn)F的橢圓準(zhǔn)線于M、N兩點(diǎn),則MF⊥NF.過(guò)橢圓一個(gè)焦點(diǎn)F的直線與橢圓交于兩點(diǎn)P、Q,A1、A2為橢圓長(zhǎng)軸上的頂點(diǎn),A1P和A2Q交于點(diǎn)M,A2P和A1Q交于點(diǎn)N,則MF⊥NF.AB是橢圓的不平行于對(duì)稱軸的弦,M為AB的中點(diǎn),則,即。若在橢圓內(nèi),則被Po所平分的中點(diǎn)弦的方程是;【推論】:1、若在橢圓內(nèi),則過(guò)Po的弦中點(diǎn)的軌跡方程是。橢圓(a>b>o)的兩個(gè)頂點(diǎn)為,,與y軸平行的直線交橢圓于P1、P2時(shí)A1P1與A2P2交點(diǎn)的軌跡方程是.2、過(guò)橢圓(a>0,b>0)上任一點(diǎn)任意作兩條傾斜角互補(bǔ)的直線交橢圓于B,C兩點(diǎn),則直線BC有定向且(常數(shù)).3、若P為橢圓(a>b>0)上異于長(zhǎng)軸端點(diǎn)的任一點(diǎn),F1,F2是焦點(diǎn),,,則.4、設(shè)橢圓(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2,P(異于長(zhǎng)軸端點(diǎn))為橢圓上任意一點(diǎn),在△PF1F2中,記,,,則有.5、若橢圓(a>b>0)的左、右焦點(diǎn)分別為F1、F2,左準(zhǔn)線為L(zhǎng),則當(dāng)0<e≤時(shí),可在橢圓上求一點(diǎn)P,使得PF1是P到對(duì)應(yīng)準(zhǔn)線距離d與PF2的比例中項(xiàng).6、P為橢圓(a>b>0)上任一點(diǎn),F1,F2為二焦點(diǎn),A為橢圓內(nèi)一定點(diǎn),則,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),等號(hào)成立.7、橢圓與直線有公共點(diǎn)的充要條件是.8、已知橢圓(a>b>0),O為坐標(biāo)原點(diǎn),P、Q為橢圓上兩動(dòng)點(diǎn),且.(1);(2)|OP|2+|OQ|2的最大值為;(3)的最小值是.9、過(guò)橢圓(a>b>0)的右焦點(diǎn)F作直線交該橢圓右支于M,N兩點(diǎn),弦MN的垂直平分線交x軸于P,則.10、已知橢圓(a>b>0) ,A、B、是橢圓上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn),則.11、設(shè)P點(diǎn)是橢圓(a>b>0)上異于長(zhǎng)軸端點(diǎn)的任一點(diǎn),F1、F2為其焦點(diǎn)記,則(1).(2).12、設(shè)A、B是橢圓(a>b>0)的長(zhǎng)軸兩端點(diǎn),P是橢圓上的一點(diǎn),,,,c、e分別是橢圓的半焦距離心率,則有(1).(2).(3).13、已知橢圓(a>b>0)的右準(zhǔn)線與x軸相交于點(diǎn),過(guò)橢圓右焦點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),點(diǎn)在右準(zhǔn)線上,且軸,則直線AC經(jīng)過(guò)線段EF的中點(diǎn).14、過(guò)橢圓焦半徑的端點(diǎn)作橢圓的切線,與以長(zhǎng)軸為直徑的圓相交,則相應(yīng)交點(diǎn)與相應(yīng)焦點(diǎn)的連線必與切線垂直.15、過(guò)橢圓焦半徑的端點(diǎn)作橢圓的切線交相應(yīng)準(zhǔn)線于一點(diǎn),則該點(diǎn)與焦點(diǎn)的連線必與焦半徑互相垂直.16、橢圓焦三角形中,內(nèi)點(diǎn)到一焦點(diǎn)的距離與以該焦點(diǎn)為端點(diǎn)的焦半徑之比為常數(shù)e(離心率).(注:在橢圓焦三角形中,非焦頂點(diǎn)的內(nèi)、外角平分線與長(zhǎng)軸交點(diǎn)分別稱為內(nèi)、外點(diǎn).)17、橢圓焦三角形中,內(nèi)心將內(nèi)點(diǎn)與非焦頂點(diǎn)連線段分成定比e.18、橢圓焦三角形中,半焦距必為內(nèi)、外點(diǎn)到橢圓中心的比例中項(xiàng).七、雙曲線的常用結(jié)論:1、點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的內(nèi)角.2、PT平分△PF1F2在點(diǎn)P處的內(nèi)角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).3、以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相交.4、以焦點(diǎn)半徑PF1為直徑的圓必與以實(shí)軸為直徑的圓相切.(內(nèi)切:P在右支;外切:P在左支)5、若在雙曲線(a>0,b>0)上,則過(guò)的雙曲線的切線方程是.6、若在雙曲線(a>0,b>0)外,則過(guò)Po作雙曲線的兩條切線切點(diǎn)為P1、P2,則切點(diǎn)弦P1P2的直線方程是.7、雙曲線(a>0,b>o)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為雙曲線上任意一點(diǎn),則雙曲線的焦點(diǎn)角形的面積為.8、雙曲線(a>0,b>o)的焦半徑公式:(,)當(dāng)在右支上時(shí),,;當(dāng)在左支上時(shí),,。9、設(shè)過(guò)雙曲線焦點(diǎn)F作直線與雙曲線相交P、Q兩點(diǎn),A為雙曲線長(zhǎng)軸上一個(gè)頂點(diǎn),連結(jié)AP和AQ分別交相應(yīng)于焦點(diǎn)F的雙曲線準(zhǔn)線于M、N兩點(diǎn),則MF⊥NF.10、過(guò)雙曲線一個(gè)焦點(diǎn)F的直線與雙曲線交于兩點(diǎn)P、Q,A1、A2為雙曲線實(shí)軸上的頂點(diǎn),A1P和A2Q交于點(diǎn)M,A2P和A1Q交于點(diǎn)N,則MF⊥NF.11、AB是雙曲線(a>0,b>0)的不平行于對(duì)稱軸的弦,M為AB的中點(diǎn),則,即。12、若在雙曲線(a>0,b>0)內(nèi),則被Po所平分的中點(diǎn)弦的方程是.13、若在雙曲線(a>0,b>0)內(nèi),則過(guò)Po的弦中點(diǎn)的軌跡方程是.【推論】:1、雙曲線(a>0,b>0)的兩個(gè)頂點(diǎn)為,,與y軸平行的直線交雙曲線于P1、P2時(shí)A1P1與A2P2交點(diǎn)的軌跡方程是.2、過(guò)雙曲線(a>0,b>o)上任一點(diǎn)任意作兩條傾斜角互補(bǔ)的直線交雙曲線于B,C兩點(diǎn),則直線BC有定向且(常數(shù)).3、若P為雙曲線(a>0,b>0)右(或左)支上除頂點(diǎn)外的任一點(diǎn),F1,F2是焦點(diǎn),,,則(或).4、設(shè)雙曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為F1、F2,P(異于長(zhǎng)軸端點(diǎn))為雙曲線上任意一點(diǎn),在△PF1F2中,記,,,則有.5、若雙曲線(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,左準(zhǔn)線為L(zhǎng),則當(dāng)1<e≤時(shí),可在雙曲線上求一點(diǎn)P,使得P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度特種車輛安裝與安全培訓(xùn)合同3篇
- 西安醫(yī)學(xué)高等??茖W(xué)?!渡虡I(yè)影片綜合案例制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版1209兩人合伙經(jīng)營(yíng)寵物美容與寄養(yǎng)中心協(xié)議3篇
- 二零二五年度珠寶首飾交易居間代理協(xié)議3篇
- 新疆機(jī)電職業(yè)技術(shù)學(xué)院《影視劇美術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 個(gè)體經(jīng)銷商專屬銷售授權(quán)協(xié)議(2024年度)版B版
- 通化師范學(xué)院《二維動(dòng)畫(huà)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024離婚債務(wù)分割詳細(xì)合同書(shū)版B版
- 二零二五版廚具設(shè)備售后服務(wù)與技術(shù)培訓(xùn)合同3篇
- 2024版電源租賃協(xié)議
- 安全生產(chǎn)法律法規(guī)匯編(2025版)
- 2025年抗肺纖維化藥物市場(chǎng)分析報(bào)告
- 銀行會(huì)計(jì)主管年度工作總結(jié)2024(30篇)
- 教師招聘(教育理論基礎(chǔ))考試題庫(kù)(含答案)
- 上海市12校2025屆高三第一次模擬考試英語(yǔ)試卷含解析
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)附答案集錦
- 長(zhǎng)亭送別完整版本
- 《鐵路軌道維護(hù)》課件-更換道岔尖軌作業(yè)
- 股份代持協(xié)議書(shū)簡(jiǎn)版wps
- 職業(yè)學(xué)校視頻監(jiān)控存儲(chǔ)系統(tǒng)解決方案
- 《銷售心理學(xué)培訓(xùn)》課件
評(píng)論
0/150
提交評(píng)論