![PID控制器中英文對照外文翻譯文獻(xiàn)_第1頁](http://file4.renrendoc.com/view10/M03/0B/29/wKhkGWWKy6CASQ7DAAI32CKs4EA975.jpg)
![PID控制器中英文對照外文翻譯文獻(xiàn)_第2頁](http://file4.renrendoc.com/view10/M03/0B/29/wKhkGWWKy6CASQ7DAAI32CKs4EA9752.jpg)
![PID控制器中英文對照外文翻譯文獻(xiàn)_第3頁](http://file4.renrendoc.com/view10/M03/0B/29/wKhkGWWKy6CASQ7DAAI32CKs4EA9753.jpg)
![PID控制器中英文對照外文翻譯文獻(xiàn)_第4頁](http://file4.renrendoc.com/view10/M03/0B/29/wKhkGWWKy6CASQ7DAAI32CKs4EA9754.jpg)
![PID控制器中英文對照外文翻譯文獻(xiàn)_第5頁](http://file4.renrendoc.com/view10/M03/0B/29/wKhkGWWKy6CASQ7DAAI32CKs4EA9755.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
中英文對照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)外文:Memory-BasedOn-LineTuningofPIDControllersforNonlinearSystemsAbstract—Sincemostprocesseshavenonlinearities,controllerdesignschemestodealwithsuchsystemsarerequired.Ontheotherhand,PIDcontrollershavebeenwidelyusedforprocesssystems.Therefore,inthispaper,anewdesignschemeofPIDcontrollersbasedonamemory-based(MB)modelingisproposedfornonlinearsystems.AccordingtotheMBmodelingmethod,somelocalmodelsareautomaticallygeneratedbasedoninput/outputdatapairsofthecontrolledobjectstoredinthedata-base.TheproposedschemegeneratesPIDparametersusingstoredinput/outputdatainthedata-base.ThisschemecanadjustthePIDparametersinanon-linemannerevenifthesystemhasnonlinearproperties.Finally,theeffectivenessofthenewlyproposedcontrolschemeisnumericallyevaluatedonasimulationexample.I.INTRODUCTIONInrecentyears,manycomplicatedcontrolalgorithmssuchasadaptivecontroltheoryorrobustcontroltheoryhavebeenproposedandimplemented.However,inindustrialprocesses,PIDcontrollers[1],[2],[3]havebeenwidelyemployedforabout80%ormoreofcontrolloops.Thereasonsaresummarizedasfollows.(1)thecontrolstructureisquitsimple;(2)thephysicalmeaningofcontrolparametersisclear;and(3)theoperators’know-howcanbeeasilyutilizedindesigningcontrollers.Therefore,itisstillattractivetodesignPIDcontrollers.However,sincemostprocesssystemshavenonlinearities,itisdifficulttoobtaingoodcontrolperformancesforsuchsystemssimplyusingthefixedPIDparameters.Therefore,PIDparameterstuningmethodsusingneuralnetworks(NN)[4]andgeneticalgorithms(GA)[5]havebeenproposeduntilnow.Accordingtothesemethods,thelearningcostisconsiderablylarge,andthesePIDparameterscannotbeadequatelyadjustedduetothenonlinearproperties.Therefore,itisquitedifficulttoobtaingoodcontrolperformancesusingtheseconventionalschemes.Bytheway,developmentofcomputersenablesustomemorize,fastretrieveandreadoutalargenumberofdata.Bytheseadvantages,thefollowingmethodhasbeenproposed:Whenevernewdataisobtained,thedataisstored.Next,similarneighborstotheinformationrequests,called’queries’,areselectedfromthestoreddata.Furthermore,thelocalmodelisconstructedusingtheseneighbors.Thismemory-based(MB)modelingmethod,iscalledJust-In-Time(JIT)method[6],[7],LazyLearningmethod[8]orModel-on-Demand(MoD)[9],andtheseschemehavelotsofattentioninlastdecade.Inthispaper,adesignschemeofPIDcontrollersbasedontheMBmodelingmethodisdiscussed.AfewPIDcontrollershavebeenalreadyproposedbasedontheJITmethod[10]andtheMoDmethod[11]whichbelongtotheMBmodelingmethods.Accordingtotheformermethod,theJITmethodisusedasthepurposeofsupplementingthefeedbackcontrollerwithaPIDstructure.However,thetrackingpropertyisnotguaranteedenoughduetothenonlinearitiesinthecasewherereferencesignalsarechanged,becausethecontrollerdoesnotincludesanyintegralactioninthewholecontrolsystem.Ontheotherhand,thelattermethodhasaPIDcontrolstructure.PIDparametersaretunedbyoperators’skills,andtheyarestoredinthedata-baseinadvance.Andalso,asuitablesetofPIDparametersisgeneratedusingthestoreddata.However,thegoodcontrolperformancecannotbenecessarilyobtainedinthecasewherenonlinearitiesareincludedinthecontrolledobjectand/orsystemparametersarechanged,becausePIDparametersarenottunedinanon-linemannercorrespondingtocharacteristicsofthecontrolledobject.Therefore,inthispaper,adesignschemeofPIDcontrollersbasedontheMBmodelingmethodisnewlyproposed.Accordingtotheproposedmethod,PIDparameterswhichareobtainedusingtheMBmodelingmethodareadequatelytunedinproportiontocontrolerrors,andmodifiedPIDparametersarestoredinthedata-base.Therefore,moresuitablePIDparameterscorrespondingtocharacteristicsofthecontrolledobjectarenewlystored.Moreover,analgorithmtoavoidtheexcessiveincreaseofthestoreddata,isfurtherdiscussed.Thisalgorithmyieldsthereductionofmemoriesandcomputationalcosts.Finally,theeffectivenessofthenewlyproposedcontrolschemeisexaminedonasimulationexample.II.PIDCONTROLLERDESIGNBASEDONMEMORY-BASEDMODELINGMETHODA.MBmodelingmethodFirst,thefollowingdiscrete-timenonlinearsystemisconsidered:,(1)wherey(t)denotesthesystemoutputandf(·)denotesthenonlinearfunction.Moreover,_(t?1)iscalled’informationvector’,whichisdefiedbythefollowingequation:,(2)whereu(t)denotesthesysteminput.Also,nyandnurespectivelydenotetheordersofthesystemoutputandthesysteminput,respectively.AccordingtotheMBmodelingmethod,thedataisstoredintheformoftheinformationvector_expressedinEq.(2).Moreover,_(t)isrequiredincalculatingtheestimateoftheoutputy(t+1)called’query’.Thatis,aftersomesimilarneighborstothequeryareselectedfromthedata-base,thepredictivevalueofthesystemcanbeobtainedusingtheseneighbors.B.ControllerdesignbasedonMBmodelingmethodInthispaper,thefollowingcontrollawwithaPIDstructureisconsidered:(3)(4)wheree(t)denotesthecontrolerrorsignaldefinedbye(t):=r(t)?y(t).(5)r(t)denotesthereferencesignal.Also,kc,TIandTDrespectivelydenotetheproportionalgain,theresettimeandthederivativetime,andTsdenotesthesamplinginterval.Here,KP,KIandKDincludedinEq.(4)arederivedbytherelations=,=/和=/。denotesthedifferencingoperatordefinedby..Here,itisquitedifficulttoobtainagoodcontrolperformanceduetononlinearities,ifPIDparameters(KP,KI,KD)inEq.(4)arefixed.Therefore,anewcontrolschemeisproposed,whichcanadjustPIDparametersinanon-linemannercorrespondingtocharacteristicsofthesystem.Thus,insteadofEq.(4),thefollowingPIDcontrollawwithvariablePIDparametersisemployed:(6)Now,Eq.(6)canberewrittenasthefollowingrelations:(7)(8)(9)whereg(·)denotesalinearfunction.BysubstitutingEq.(7)andEq.(8)intoEq.(1)andEq.(2),thefollowingequationcanbederived:(10)(11)whereny_3,nu_2,andh(·)denotesanonlinearfunction.Therefore,K(t)isgivenbythefollowingequations:(12)(13)whereF(·)denotesanonlinearfunction.Sincethefutureoutputy(t+1)includedinEq.(13)cannotbeobtainedatt,y(t+1)isreplacedbyr(t+1).Becausethecontrolsystemsothatcanrealizey(t+1)!r(t+1),isdesignedinthispaper.Therefore,ˉ_(t)includedinEq.(13)isnewlyrewrittenasfollows:(14)Aftertheabovepreparation,anewPIDcontrolschemeisdesignedbasedontheMBmodelingmethod.Thecontrollerdesignalgorithmissummarizedasfollows.[STEP1]Generateinitialdata-baseTheMBmodelingmethodcannotworkifthepastdataisnotsavedatall.Therefore,PIDparametersarefirstlycalculatedusingZieglar&Nicholsmethod[2]orChien,Hrones&Reswick(CHR)method[3]basedonhistoricaldataofthecontrolledobjectinordertogeneratetheinitialdatabase.Thatis,_(j)indicatedinthefollowingequationisgeneratedastheinitialdata-base:(15)whereandaregivenbyEq.(14)andEq.(9).Moreover,N(0)denotesthenumberofinformationvectorsstoredintheinitialdata-base.NotethatallPIDparametersincludedintheinitialinformationvectorsareequal,thatis,K(1)=K(2)=···=K(N(0))intheinitialstage.[STEP2]CalculatedistanceandselectneighborsDistancesbetweenthequeryandtheinformationvectorsarecalculatedusingthefollowingL1-normwithsomeweights:(16)whereN(t)denotesthenumberofinformationvectorsstoredinthedata-basewhenthequeryisgiven.Furthermore,denotesthel-thelementofthej-thinformationvector.Similarly,denotesthel-thelementofthequeryatt.Moreover,denotesthemaximumelementamongthel-thelementofallinformationvectorsstoredinthedata-base.Similarly,denotestheminimumelement.Here,kpieceswiththesmallestdistancesarechosenfromallinformationvectors.[STEP3]ConstructlocalmodelNext,usingkneighborsselectedinSTEP2,thelocalmodelisconstructedbasedonthefollowingLinearlyWeightedAverage(LWA)[12]: (17)wherewidenotestheweightcorrespondingtothei-thinformationvectorintheselectedneighbors,andiscalculatedby:(18)[STEP4]DataadjustmentInthecasewhereinformationcorrespondingtothecurrentstateofthecontrolledobjectisnoteffectivelysavedinthedata-base,asuitablesetofPIDparameterscannotbeeffectivelycalculated.Thatis,itisnecessarytoadjustPIDparameterssothatthecontrolerrordecreases.Therefore,PIDparametersobtainedinSTEP3areupdatedcorrespondingtothecontrolerror,andthesenewPIDparametersarestoredinthedata-base.ThefollowingsteepestdescentmethodisutilizedinordertomodifyPIDparameters: (19)(20)where_denotesthelearningrate,and饎hefollowingJ(t+1)denotestheerrorcriterion:(21)(22)yr(t)denotestheoutputofthereferencemodelwhichisgivenby:(23)(24)Here,T(z?1)isdesignedbasedonthereferenceliterature[13].Moreover,eachpartialdifferentialofEq.(19)isdevelopedasfollows:.(25)NotethataprioriinformationwithrespecttothesystemJacobianisrequiredinordertocalculateEq.(25).Here,usingtherelationx=|x|sign(x),thesystemJacobiancanbeobtainedbythefollowingequation:(26)wheresign(x)=1(x>0),?1(x<0).Now,ifthesignofthesystemJacobianisknowninadvance,byincludingin,theusageofthesystemJacobiancanmakeeasy[14].Therefore,itisassumedthatthesignofthesystemJacobianisknowninthispaper.[STEP5]RemoveredundantdataInimplementingtorealsystems,thenewlyproposedschemehasaconstraintthatthecalculationfromSTEP2toSTEP4mustbefinishedwithinthesamplingtime.Here,storingtheredundantdatainthedata-baseneedsexcessivecomputationaltime.Therefore,analgorithmtoavoidtheexcessiveincreaseofthestoreddata,isfurtherdiscussed.Theprocedureiscarriedoutinthefollowingtwosteps.First,theinformationvectorswhichsatisfythefollowingfirstcondition,areextractedfromthedata-base:[Firstcondition](27)whereisdefinedby(28)Moreover,theinformationvectorswhichsatisfythefollowingsecondcondition,arefurtherchosenfromtheextracted:(29)whereisdefinedby(30)Ifthereexistplural,theinformationvectorwiththesmallestvalueinthesecondconditionamongall,isonlyremoved.Bytheaboveprocedure,theredundantdatacanberemovedfromthedata-base.Here,ablockdiagramsummarizedmentionedabovealgorithmsareshowninFig.rr_+ModelPIDTunerTunerTunerPID整定DatabaseModelMemory-BasedPIDControllerCControllerControllerSystemControllerSystemIII.SIMULATIONEXAMPLEInordertoevaluatetheeffectivenessofthenewlyproposedscheme,asimulationexampleforanonlinearsystemisconsidered.Asthenonlinearsystem,thefollowingHammersteinmodel[15]isdiscussed:[System1](31)[System2](32)wheredenotesthewhiteGaussiannoisewithzeromeanandvariance.StaticpropertiesofSystem1andSystem2areshowninFig.2.Fig.2FromFig.2,itisclearthatgainsofSystem2arelargerthanonesofSystem1at.Here,thereferencesignalr(t)isgivenby:(33)Theinformationvectorˉ_isdefinedasfollows:(34)Thedesiredcharacteristicpolynomialincludedinthereferencemodelwasdesignedasfollows:(35)whereT(z?1)wasdesignedbasedonthereferenceliterature[13].Furthermore,theuser-specifiedparametersincludedintheproposedmethodaredeterminedasshowninTableI.TABLEIUSER-SPECIFIEDPARAMETERSINCLUDEDINTHEPROPOSEDMETHOD(HAMMERSTEINMODEL).OrdersoftheinformationvectorNumberofneighborsLearningrateCoefficientstoinhibitthedataInitialnumberofdataForthepurposeofcomparison,thefixedPIDcontrolschemewhichhaswidelyusedinindustrialprocesseswasfirstemployed,whosePIDparametersweretunedbyCHRmethod[3].Then,PIDparameterswerecalculatedas(36)Moreover,thePIDcontrollerusingtheNN,calledNN-PIDcontroller,wasappliedforthepurposeofthecomparison,wheretheNNwasutilizedinordertosupplementthefixedPIDcontroller.ThecontrolresultsforSystem1aresummarizedinFig.3,wherethesolidlineanddashedlinedenotethecontrolresultsoftheproposedmethodandthefixedPIDcontroller,respectively.Furthermore,trajectoriesofPIDparametersusingtheproposedmethodareshowninFig.4.FromFig.3,owingtononlinearitiesofthecontrolledobject,thecontrolresultbythefixedPIDcontrollerisnotgood.Ontheotherhand,fromFig.3andFig.4,thegoodcontrolresultcanbeobtainedusingtheproposedmethod,becausePIDparametersareadequatelyadjusted.Moreover,thenumberofdatastoredinthedatabasewas49.Usingthealgorithmtoremoveneedlessdata,thenumberofdatastoredinthedata-basecanbeeffectively(37)whereNdenotesthenumberofstepsper1[epoc].Furthermore,thenumberofiterationwassetas1,becausePIDparameterscanbeadjustedinanon-linemannerbytheproposedmethod.Moreover,theNN-PIDcontrollerwasappliedtoSystem1.Errorbehaviorsof_expressedinEq.(37)areshowninFig.5,andcontrolresultsareshowninFig.6.Fig.5Fig.6FromFig.5,thenecessarynumberforlearningiterationswas86[epoc]untilthecontrolresultusingtheNN-PIDcontrollercouldbeobtainedthesamecontrolperformancesastheproposedmethod,thatis,untilwassatisfied.Therefore,theeffectivenessoftheproposedmethodisalsoverifiedincomparisonwiththeNN-PIDcontrollerfornonlinearsystems.Next,thecasewherethesystemhastime-variantparametersisconsidered.Thatis,thesystemchangesfromEq.(31)Fig.5.ErrorbehaviorsusingthecontrollerfusedthefixedPIDwiththeNN-PIDforHammersteinmodel.Fig.6.ControlresultusingthecontrollerfusedthefixedPIDwiththeNN-PIDforHammersteinmodel.toEq.(32)att=70.First,thecontrolresultwiththefixedPIDcontroller,isshowninFig.7,wherePIDparametersaresetasthesameparametersasshowninEq.(36).Sincethegainofthecontrolledobjectbecomeshighgainaroundr(t)=2.0,thefixedPIDcontrollerdoesnotworkwell.Ontheotherhand,theproposedcontrolschemewasemployedinthiscase.ThecontrolresultandtrajectoriesofPIDparametersareshowninFig.8andFig.9.Fig.8Fromthesefigures,agoodcontrolperformancecanbealsoobtainedbecausePIDparametersareadequatelyadjustedusingtheproposedmethod.Theusefulnessforthenonlinearsystemwithtime-variantparametersissuggestedinthisexample.IV.CONCLUSIONSInthispaper,anewdesignschemeofPIDcontrollersusingtheMBmodelingmethodhasbeenproposed.ManyPIDcontrollerdesignschemesusingNNsandGAshavebeenproposedfornonlinearsystemsuptonow.Inemployingtheseschemeforrealsystems,however,itisaseriousproblemthatthelearningcostbecomesconsiderablylarge.Ontheotherhand,accordingtotheproposedmethod,suchcomputationalburdenscanbeeffectivelyreducedusingthealgorithmforremovingtheredundantdata.Inaddition,theeffectivenessoftheproposedmethodhavebeenverifiedbyanumericalsimulationexample.Theapplicationofthenewlyproposedschemeforrealsystemsandtheextensiontomultivariablecasesarecurrentlyunderconsideration.基于記憶的在線非線性系統(tǒng)PID控制器整定摘要由于大部分控制過程具有非線性,所以設(shè)計一種能夠處理具有非線性系統(tǒng)的控制器就顯得尤為重要。另一方面,PID控制器也被廣泛應(yīng)用于過程控制系統(tǒng)中。因此,在本文中提出了一種基于記憶的MB模型用來處理非線性PID控制器設(shè)計方案。通過MB方法,可以自動產(chǎn)生基于存儲在數(shù)據(jù)中的控制對象的輸入/輸出數(shù)據(jù)對的本地模型。這種設(shè)計方案,通過存儲在數(shù)據(jù)庫中的輸入/輸出數(shù)據(jù)產(chǎn)生變量。即使系統(tǒng)具有非線性,該設(shè)計方案。同樣能在線調(diào)整PID變量。最后,我們通過一個仿真系統(tǒng)的數(shù)據(jù)演化過程來證明該方案的有效性。Ⅰ引言近年來,像自適應(yīng)控制理論,魯棒控制理論等一些復(fù)雜的控制算法被提出和應(yīng)用。但是,在工業(yè)過程中PID控制器依然占80%甚至更多的比例,其原因如下所述:(1)控制結(jié)構(gòu)簡單;(2)控制參數(shù)物理意義清晰;(3)能夠很好地滿足客戶要求。因此,PID控制器的設(shè)計自然具有強(qiáng)大的吸引力。但是由于大部分控制系統(tǒng)具有非線性,簡單地應(yīng)用固定PID參數(shù)很難得到交好的控制效果。所以到現(xiàn)在為止已經(jīng)提出了神經(jīng)網(wǎng)絡(luò)(NN)和遺傳算法(GA)等PID參數(shù)整定方法。使用這些方法的學(xué)習(xí)代價是很大的,而且PID參數(shù)由于系統(tǒng)的非線性特征不能得到充分的調(diào)整。因而通過這些方便的方法不能得到很好的控制效果。不過,計算機(jī)的發(fā)展讓我們能夠記憶,快速檢索以及讀取大量數(shù)據(jù)?;谶@些優(yōu)點(diǎn)我們提出了以下方案:無論何時獲得的新數(shù)據(jù)都被保存下來。被稱為“詢問”的信息要求從保存的數(shù)據(jù)中提取出來。這種基于記憶模型(MB)的方法叫做JIT方法。懶散學(xué)習(xí)方法或MOD方法。并且在過去的十年中,這些方法被給予了大量的關(guān)注。在本文中討論了一種基于MB模型的PID控制器設(shè)計方案。一些基于用屬于MB模型方法的JIT方法的PID控制器已經(jīng)被提出?;谝郧暗姆椒?,用JIT方法的目的是應(yīng)用PID結(jié)構(gòu)的輔助反饋控制器,但是,在相關(guān)信號改變的情況下的非線性,將會導(dǎo)致跟蹤特性沒有足夠的保證,因?yàn)樵谡麄€控制系統(tǒng)中控制器不包含任何的積分行為。另一方面,后一種方法具有一個PID控制結(jié)構(gòu)。PID參數(shù)不是通過與控制對象的特征相一致的在線方式整定的。因此,在本文中我們設(shè)計提出了一種基于MB模型的方法。通過這種新方法,有MB模型方法得到的PID參數(shù)在比例環(huán)節(jié)中得到了充分的整定,這主要是為了控制誤差。規(guī)劃后的PID參數(shù)被保存在數(shù)據(jù)庫中。因此,回游更多的與空話子對象特征相一致的適當(dāng)?shù)腜ID參數(shù)被保存。再者,我們進(jìn)一步提出了一種避免存儲數(shù)據(jù)過分增長的算法。這種算法可以減少記憶和計算機(jī)花費(fèi)。最后,這種新方法的有效度通過一個仿真模型來檢測。Ⅱ基于記憶模型的PID控制器設(shè)計方法AMB模型方法第一,我們引入了如下時間遞減非線性系統(tǒng)(1)其中,表示系統(tǒng)輸出,表示非線性函數(shù),被稱為‘信息矢量’通過下式定義:(2)其中,表示系統(tǒng)輸入,另外,和分別表示系統(tǒng)的輸出和輸入的階數(shù)。在MB模型方法中數(shù)據(jù)一等式(2)中的信息矢量的形式被存儲。在估計輸出時,需要,因此被叫做詢問。一些相似相鄰數(shù)被從數(shù)據(jù)庫中選出后,我們可以通過這些相鄰數(shù)而獲得系統(tǒng)的預(yù)測值。B基于MB模型方法的控制器設(shè)計在本文中我們引用了具有如下PID結(jié)構(gòu)的控制規(guī)律:(3)(4)其中表示誤差控制信號,有如下定義:(5)其中表示相關(guān)信號,另外,,和分別表示比例增益,調(diào)節(jié)時間和微分時間,表示采樣時間。在這里等式(4)中的,和有如下聯(lián)系:=,=/和=/。表示操作者的區(qū)別,并被定義為:。在這里由于非線性的存在我們將很難獲得好的控制效果,這是在式(4)中的,,確定不變的假設(shè)下才成立的。因此,一種新的控制方案被提出來,這種方法能夠通過與系統(tǒng)特征保持一致的在線方式調(diào)整PID參數(shù)。因而有了如下取代等式(4)的具有可變PID參數(shù)的PID控制規(guī)律:(6)現(xiàn)在等式(6)可以重新變成如下形式:(7)(8)(9)其中表示一個線性函數(shù),將式(1)和式(2)帶入式(7)和式(8)中我們可以得到如下等式:(10)(11)其中,ny≥3,nu≥2,h(1)表示一個非線性函數(shù),因而通過下面等式給出:(12)(13)其中,表示非線性函數(shù),既然下一個輸出不能在t時刻得到我們就用來代替。為了使控制系統(tǒng)能夠識別本文中所定義的—>,等式(13)中的可以被重新寫成如下形式:(14)經(jīng)過以上的準(zhǔn)備工作以后,一種基于MB模型方法的PID控制被設(shè)計出來了。下面對控制器的設(shè)計算法作簡單闡述。第一步:產(chǎn)生初試數(shù)據(jù)庫如果以前的數(shù)據(jù)沒有被全部保存,MB模型方法將不能工作。因此首先通過Z-N方法或CHR方法計算出PID參數(shù)。這兩種方法都是在原有歷史記錄的基礎(chǔ)上初始化數(shù)據(jù)庫。在下面等式中存在的被稱為初試數(shù)據(jù)庫。(15)其中,和分別由式(14)和式(9)獲得。表示存儲在初始數(shù)據(jù)庫中的信息矢量的數(shù)量。注意它在初始信息矢量中的PID參數(shù)是相等的,即:。第二步:計算距離,選擇相鄰數(shù)詢問和信息矢量之間的距離通過下述具有一定重復(fù)的—一范數(shù)計算出(16)表示當(dāng)詢問給出時,數(shù)據(jù)庫中存儲的信息矢量數(shù)量表示第個信息矢量的第個元素。類似地,表示在t時刻詢問第個元素。表示在數(shù)據(jù)庫中所存儲的所有信息矢量的第個元素的最大值。類似地,則表示最小元素,在這里具有最小距離的被從所有的信息矢量中選擇出來。第三步:建立本地模型接下來,使用第一步中所選擇的,然后基于如下線性平均質(zhì)量建立本地模型: (17)其中,表示和第個信息矢量相一致的重量。取自于所選擇的鄰居,并且通過下式計算:(18)第四步:數(shù)據(jù)調(diào)整在和控制對象相一致的現(xiàn)在狀態(tài)不能有效保存到數(shù)據(jù)庫中的情況下,一個適當(dāng)?shù)腜ID參數(shù)不可能被有效的計算出來。為了減少控制誤差,必須調(diào)整PID參數(shù)。因此在步驟3中所得出來的PID參數(shù)將作和控制誤差一致的更新。然后這些新的PID參數(shù)被保存到數(shù)據(jù)庫中。如下懸崖遞減法被用來規(guī)范PID參數(shù)。(19)(20)其中表示學(xué)習(xí)率。下式所示表示誤差指標(biāo):(21)(22)表示相關(guān)模型的輸出,該模型如下所示:(23)(24)在這里,是基于文獻(xiàn)[13]而設(shè)計的。與等式(19)的每一部分區(qū)別描述如下:(25)注意到為了計算等式(25)要求一個考慮系統(tǒng)雅可比行列式的優(yōu)先信息。在這里通過關(guān)系式,系統(tǒng)的雅可比行列式可以通過如下等式獲得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2學(xué)會溝通交流(說課稿)-2023-2024學(xué)年道德與法治五年級上冊統(tǒng)編版
- 2025暫估價材料公開招標(biāo)合同范本變頻水泵排污泵
- 6~9的認(rèn)識(說課稿)-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版
- 2025以買賣合同擔(dān)保
- 2024年秋九年級化學(xué)上冊 第四單元 自然界的水說課稿 (新版)新人教版
- 2023三年級英語上冊 Assessment 3說課稿1 湘少版
- 路基邊坡防滑平臺施工方案
- Unit 4 My tidy bag Lesson 1 I have a big bag (說課稿)-2024-2025學(xué)年粵人版(2024)英語三年級上冊
- 2023八年級地理上冊 第一章 中國的疆域與人口第一節(jié) 中國的疆域說課稿 (新版)湘教版
- 出租代工合同范例
- 2024北京海淀高三一模英語試卷(含參考答案)
- 三高疾病之中醫(yī)辨證施治
- 全科醫(yī)學(xué)的基本原則和人文精神(人衛(wèi)第五版全科醫(yī)學(xué)概論)
- 船員健康知識課件
- 成人住院患者靜脈血栓栓塞癥預(yù)防護(hù)理
- 《揚(yáng)州東關(guān)街掠影》課件
- 《3-6歲兒童學(xué)習(xí)與發(fā)展指南》健康領(lǐng)域內(nèi)容目標(biāo)與指導(dǎo)
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗(yàn)的標(biāo)準(zhǔn)大氣條件
- 環(huán)保行業(yè)研究報告
- 孩子撫養(yǎng)費(fèi)起訴狀范本:免修版模板范本
- 物流服務(wù)項目的投標(biāo)書
評論
0/150
提交評論