SAE+特別報告:EV+電池創(chuàng)新-英_第1頁
SAE+特別報告:EV+電池創(chuàng)新-英_第2頁
SAE+特別報告:EV+電池創(chuàng)新-英_第3頁
SAE+特別報告:EV+電池創(chuàng)新-英_第4頁
SAE+特別報告:EV+電池創(chuàng)新-英_第5頁
已閱讀5頁,還剩54頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

心KEYSIGHT

TECHBRIEFS

SPECIALREPORT:

EVBATTERYINNOVATION

NOVEMBER2023

Sponsoredby

What’s

insidethis

specialissue?

EVLABTOUR

Poweringthe

Futureof

ElectricVehicles

Joinusforanexclusive

behind-the-scenestour

oftheULSolutions

andKeysightEVlabs

toseethetechdriving

high-powercharging,

batteries,andhowEVs

mightfuelthegrid.

Registernow

CONTENTS

FEATURES

2EVBatteries:RaisingtheBarforaNewEraofElectrifiedMobility

7AdvancingHigherSpeedsandNewTechniquesforEV

Recharging

11ProposedStandardsandMethodsforLeakTestingLithium-IonBatteryPacks

16EmergingPlasma

FIB-SEMTechniquesAdvancing

BatteryInnovation

20BattlefortheBox

TECHBRIEFS

25DevelopingHigh-Energy-DensityBatteriesUsingAluminumFoil

26UsingNano-EngineeringTechniquestoDevelopaSaferBattery

27NewPolymerCoatingCouldBoostEVBatteries

27EVBatteryBreakthrough:

10-MinuteCharge

ONTHECOVER

AnEVbatterypackthermal-

signaturerepresentationinadesignmodelingandsimulation(MODSIM)environment.

(Image:DassaultSystèmes)

EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20221

Figure1:Batterydesignandtestingmustbeabletoadapttoemergingcellformfactors,cellchemistries,andinteroperabilityrequirements.

takesaboutfiveminutes.Todeliveracomparableexperience,EVsneedtoextendrangeandincreasethe

availabilityoffastchargingoptions.

MoreindustrialDCfast-chargingstationsarecomingtomarket

becausetheycanchargeanEVto80%capacityinunder20minutes.Incontrast,anACchargerathomemighttakeallnighttoreachfull

charge.AreportbyGlobalMarketInsightsestimatesthatthemarketforDCfast-chargingstations

willgrowto$110billionby2032,fromonly$8.5billionin2022.

Infrastructurebuiltonfast

chargingstationsimpactseverythingfromhownewbatterycellsare

designedtohowbatterypacks

aretestedandmanufactured.NotonlydoEVbatteriesneedtobeabletohandlehighervoltages

forfastercharging,buttheymustalsobetestedinawiderrange

ofscenariostounderstand:

?Environmentalimpacts

onchargingspeed

?Howfrequentfast-charging

impactsbatterylife

Forexample,someearlystudies

exploringtheweatherimpactonDC

fastchargingfoundthatchargingratesdegradeddramaticallyinextremely

coldweather.ThishasasignificantimpactnotonlyontheconsumerEVmarket,butespeciallyonschedule-drivenheavytransportfleetswhichuselarge-capacitybatteries.

Theincreaseddemandfor

higherpowerchargingandvariable

environmentalconditionswillnecessitatebatterydevelopmentandtestingthat

incorporatestheseevolvingrequirements.

Investinginfuture-ready

batterycelltesting

ThenextgenerationofEVbatteriesstartswithbettercells.Whilebatterycostsaredecreasing,mostLi-ion

batteriesusecylindricalcellsbecausetheyarematureandlessexpensivetomanufacture.However,duetotheir

shape,cylindricalbatterycellshave

limitationsintermsofpower.Thenext

eraofEVbatteriesneedsmoreenergy

densitytoimproverange,alongwith

morepowertosupportfastcharging.

OEMsandbatterydevelopersare

researchingnewformfactorsand

cellchemistriestoincreasebattery

densityandpower.Prismaticcells

aregainingpopularitybecausethey

arelargerthancylindricalcellsand

candelivermorepowerandstore

moreenergyinthesamevolume.

Newbatterychemistriescould

alsoreducecarbonemissionsduring

manufacturing,whilekeepingor

increasingenergydensity.For

example,reducingtheamountof

nickelinlithium-nickel-manganese-

oxidecathodesandreplacingitwitha

cheaperandmoreabundantalternative

likemanganesecanreducecosts

aswellasproductionemissions.

Theseinnovationsimpactbattery

celldesignandtestinginafewways:

?Newbatterycellformfactors:

Prismatic,pouch,round,andeven

buttoncellscreatesignificantchangesindimensionsandtablocations.

EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20233

EVBatteries

Figure2:Eachstageofthedevelopmentcycleneedstestenvironmentsthatcansupporttherequiredvoltage.

Thesechangesimpacttheway

thesecellsneedtobeconnected

tothetestequipment.Therefore,flexiblefixturingiscrucialtoensureadaptabilityevenascelldesigns

changefrommodeltomodel.

?Newcellchemistries:Thereisintensiveresearchtodevelopnewcellchemistrieswithgreaterenergydensity,sustainableproduction,orapplication-specific

advantages.However,toproduce

cellsusingthesenewelectrochemicalcombinations,differentvoltage

boundariesandcharge-discharge

ratesmustbecharacterizedbeforeselectingtheoptimalelectrochemicalcompositiontomeetvarious

performanceandcostparameters.

?Fastercharging:Fastercharging

leadstohighercurrentdemandsandfastertransientsonthe

celllevel.Testequipmentmustthereforekeepupwithhigher

constantcurrentsandpulses.

?Testinglonger-lastingbatteries:Testinglonger-lastingbatteries

requireslongertestcyclestoverifythemaximumcyclecountand

channeloccupation.Thisrequiresnumerousroundsofchargeanddischarge.Cellcyclingequipmentwithregenerativepowerwillhelpreduceoperatingelectricitycosts.

Newapproachestobattery

developmentcanhelpcompanies

researchanddeploynewformfactors

TheabilitytochargeEVsataveryfastrateisthekeytoelectrifyingmobilityacrosstheU.S.

4NOVEMBER2023

andchemistriesfasterandwithlessrisk.Forexample,testingbatterycellsusingemulationsofreal-worldconditionswillensuretheperformanceofcellsintheirintendedusecases.Testsystemsmust

handlehundredsofcellspecimensof

differentformfactorssimultaneously,

withindividualchannelcontrolfor

greaterflexibility.Testingshouldalso

becustomizabletocharacterizecell

performanceunderdifferentorientations,climates,anddriveprofilesderivedfromstandardsorfieldmeasurements.

Meetinghigh-powerbatterypacktestingrequirements

Asindividualbatteriesareassembledintomodulesandpacks,testingshifts

fromcharacterizinginternalcelldynamicstoanalyzingpackinterconnections

betweenmodulesandothervehicle

electronics.Othermeasurementsincludedeterminingthepack’sdurability,

performanceunderdifferentconditions,peakpower,andfailurerisks.

Atthepacklevel,fasterchargingnecessitatestestsystemsthat

cansupporthighervoltagesto

increasepowerwithoutsignificantlyincreasingcurrent.Anexampleofthatistheshiftfrom400Vsystemsto800Vsystems,andthepotentialemergenceof1,000Vsystems.

Theintroductionofnewcell

chemistriesalsocreatesdifferent

voltageandcurrentrangesatthepacklevel.Withnewwaysofutilizingpacksincars,multi-channelsystems,and

varyingpowerdemandsareemerging.Packswithbuilt-inrelaycontacts

andchargingportsarebecoming

morecommon.Thisrequiresthe

implementationofmulti-channelpacktestsystemsandparalleloperations.

Itisalsointerestingtonotethatthetrendofintegratingcellsinto

packsisgainingpopularity.Tests

thatweretraditionallyperformedatthemodulelevelarenowcarriedoutonpacks,andindividualcell

measurementsarebecomingmoreimportantinthisapplicationmodel.

FacilitatingtheseadvancementsinEVbatterydevelopmentrequiresastrategictechnologyroadmapthatcansupport

EVBATTERYINNOVATIONSPECIALREPORT

ACwallcharger

Cellmanufacturing

DCchargingstation

Designvalidation/characterization

ofbatterycells,modulesandpacks

Low-voltageMotor

systems

Powertrain

inverter

DC-DCconverter

y

Onboardcharger

Batterpack

Storageinverter

Energystorage

PVinverter

Photovoltaicarrays

Electricitygrid

Figure3:AutomotivemanufacturersareincreasinglyusingemulationstovalidateEVconformancewithdifferentpartsoftheecosystem.

currentandupcomingEVtrends,suchasvehicle-to-grid(V2G)applications.

Emulatingrealworldecosystembeforehittingtheroad

AstheEVecosystemevolves

toincludefasterchargingstationsandintegrationwiththegrid,thebatterymanagementsystemmustbeabletoaccountforawider

rangeofreal-worldscenariosto

ensuresafebatteryoperations

andtohelpextendbatterylife.

Besidestestingthepackarchitecture,batterydesignersmustcarryout

extensiveteststoemulatereal-

worldenvironments,suchas:

?Interactionofallthecomponents

involvedwiththepack,and

theirmutualimpact

?Internalcommunicationofallelectricalandmechanicalcomponents

?Externalcommunicationwiththechargingstationandgrid

?ThermalandelectricalreactionsofthebatterypackandthermalmanagementAnapplicationareathatisgaining

momentumisV2G-enabledEVs,whereinsteadoftheclassicalone-waypowerflowfromthechargingstationtotheEVbattery,the

batterycansupplyelectricitybacktothepowergridtohelpbalancethegridintimesofhighusage.

StudieshavebeencarriedouttoseeiffrequentusageoftheEVinV2G-

Figure4:EmulatingchargingstationsinthelabspeedsEVconformancetesting.

modewillcausecapacityandpowerfade.Whileusefulforearlyprognosis,itisalsoimportanttoanalyzethe

impacttowardsthebattery’send-of-lifestagewherethedegradationratecanbecomeexponential.

Advancementsinemulation

capabilitiesarehelpingbattery

designerstestreal-worldscenarios

fasterandmoreaccurately.Insteadofusingactualdevices,developersnowrelyonemulatorstotestfordynamic,electrical,andevenclimaticstress.

Emulatingawiderangeof

scenariosrequiresasystemthatcanhandlethousandsoftestchannels

simultaneously.Thesystemshould

alsointegratewiththecompany’slab

managementsoftwareplatformso

labmanagerscanbetterutilizetheirresourcesandthemassiveamountofdatacollectedfromeachcell,module,orpacktoimprovedesigniterations.

Whileextensivesystem-wide

emulationtestingintheresearch

anddesignphasecanhelpensure

performanceandsafetyspecificationsaremet,qualitycheckpointsalong

thehigh-volumemanufacturingprocessalsoplayacriticalroleinthefinalbatteryqualityandcost.

Ensuringqualityfromblueprinttoproduction

Thetransitionfrombatterydesigntomanufacturingrequiresathoroughly

EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20235

EVBatteries

Figure5:Cellcyclingandagingarethemosttime-consumingstagesofthecomplexbatterycellmanufacturingprocess.

validateddesignblueprintfromthelabtothebatterygigafactory,whichfacesadifferentsetofchallenges.

Forgigafactories,throughputisavitalbarometerofproductivity.IntheLi-ioncellmanufacturingprocess,thecellformationandagingstagesarethemosttime-consuming.Duringcellaging,manufacturersmustmeasurethecell’sself-dischargerateeven

whenitisnotconnectedtoany

device.Thepurposeistoidentify

errantcellsthatexhibitabnormal

orexcessiveself-discharge,since

such“bad”cellsadverselyaffecttheperformanceofmodulesandpacks.

Acellcantakedays,weeks,or

monthstoexhibititsself-discharge.

However,inatimeandcost-sensitivemanufacturingenvironment,the

traditionalwayoftrackingself-

dischargeusingtheOpenCircuit

Voltage(OCV)methodisnotpractical.

Instead,manufacturersareusinganewpotentiostaticmeasurementmethodtodirectlymeasurethe

cell’sinternalself-dischargecurrent.Thismethodtypicallytakeshoursor

6NOVEMBER2023

less—savingtimeandpreciousfloorspacebynothavingtoholdthecellsforthisvitalqualitygatecheck.

Producingmorepowerful

batterycellsthatcanchargefasterrequiresadditionalcellcyclinginthegigafactoryandmoredata

tocaptureandsortthroughto

determinethecell'scyclelife

andhowthechargerateaffects

thecell'slife.Ascellcapacity

quicklyincreases,researchersandmanufacturerswillalsoneedto

sourceandsinklargercurrents.

Tocircumventcostlypower

consumption,moderncellcyclersemployregenerativepower,wherepowerregeneratedduringcell

dischargeisrecycledbacktothe

grid,therebyreducingnetenergy

consumptiontoloweroperating

costs.Thisprocessalsogenerates

lessheatintheelectronics,

reducingtheneedtoremoveheat

fromtheproductionfacility.

Witheachstepofthecell

formattingandagingprocessinthegigafactory,ensuringinvestmentin

equipmentthatimprovesthroughputandhelpslowerproductioncosts

willcontributetowardstheaimtolowertheoverallEVbatterycost.

PoweringaheadtowardsbetterbatteriesforEVs

Asvehicleelectrificationcontinuestoadvance,batterydevelopers

andmanufacturersmustpre-emptnewrequirementsintheirbatterytestingcapabilities.Increased

EVbatterypowerandcapacity,

chargingdemands,andproductionoptimizationrequireresearchers

andmanufacturerstomeetthese

demandswhilealsoplanningahead.

Theseinnovationswillundoubtedlyhelptofurtherscalethedevelopmentandbuildingofbetterbatteries

topowernext-generationelectric

vehiclesthatmeetconsumer

expectationsforlongerrangeand

fastercharging,aswellasthebroaderautomotiveindustry’sgoaltowards

asustainableelectricfuture.

Formoreinformationvisit

/find/e-mobility.

EVBATTERYINNOVATIONSPECIALREPORT

AdvancingHigherSpeedsandNewTechniques

forEVRecharging

TwonewinitiativesaddressmethodstomakeEVchargingfaster—orrequireno“downtime”atall.

T

heabilitytochargeelectricvehiclesataveryfast

rateisakeytoelectrifyingmobilityacrosstheU.S.

It’safocusoftheU.S.Dept.ofEnergy’sExtremeFastChargerproject,whosepotentialwasdemonstrated

convincinglyonaproductionGMCHummerEVatthe

AmericanCenterforMobility(ACM)inYpsilanti,MI,lastfall.

TheHummerEVobservedbySAEMediafeaturedan

800-voltelectricalarchitecture—consideredstate-of-

the-artforDC“extremefast”charging.BothGMandDeltaElectronics(Americas)Ltd.,whichprovidedthecharging

system,arepartneringwithDoEontheprogram.The

resultsofthedemonstrationwere“phenomenal,”saidJimKhoury,SeniorManagerofGlobalElectrificationatGM.

Theparametersfortheextremefastchargerwere

establishedinanearliertestthatalsoinvolveda

HummerEV.Thattest,spanningnineminutesat500

ampsatanaverage725volts,yieldednearly55kWh

beforetheEV’sbatterystartedtolimitthecurrent.

“WhileotherDCfastchargerscanalsochargeat500

amps,thepowercapabilityislower,soitpower-limits

EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20237

EVRecharging

Figure1:DeltaElectronics’CharlesZhuandGM’sJimKhouryrechargeaGMCHummerEVwiththe400-kWextremefastchargerduringademoattheAmericanCenterforMobility.(Image:DeltaElectronics)

soonerinthechargecycle.Ourpowerlimitis400kW,”saidDr.Charles

Zhu,VPoftheAutomotiveBusinessGroupforDeltaElectronics,andthePrincipalInvestigatorfortheDoE

project.Hesaidthatgenerally,theDeltaextremefastchargingsystemcandeliver66.7kWhin10minutes.

Medium-VoltageBenefits

DeltaElectronicsdevelopedthe

solid-statetransformer(SST),power

cabinet,andthechargingstand/

dispenserthatarevitaltotheproject.TheSSTconvertsthe“mediumvoltage”(13,200VAC)into1000VDC.The

powercabinetusestheDCvoltagetocreateacurrentsource,providingupto500amps.Thedispenser

communicateswiththevehicleandprovidescurrenttothebatterypack.

Current-generationfastchargersareconsideredlow-voltage.Tesla’sSupercharger,forexample,runs

at480V.Themovetomedium

8NOVEMBER2023

voltagepresentedhurdles,explainedZhu.“Mediumvoltagecanjump

awidergapbecauseofitshigherpotentialenergy,”hesaid,notingspecialwire,materials,anddesignswereneededtoaccommodate

thehighervoltages.Fromasafetystandpoint,theDoE-Deltaextremefastchargerhasamedium-voltageswitchtoisolatethesystemfromthegrid.Alicensedelectrician

withproperpersonalprotection

equipmentmustclosetheswitch.

“Ifsomethinggoeswrong,the‘blastradius’isabout30ft[91.4m],whichiswhyallothersmuststandclearwhentheswitchisactuated,”Zhusaid.

Therearestrongreasonstooptfor

mediumvoltage,accordingtoZhu.“Theadvantagesthatwegainfrompulling

directlyfrommediumvoltageincludehigherefficiency,asaconventional

transformercanbeabout95percentefficient,”hesaid.Aconventional

transformerneedstohaveenergy

passthroughaconversionstage—

anotherloss—tocreatetheDCcurrentneededtochargeavehiclebattery,headded.Themedium-voltagesystem

providesanapproximate96.5percentoutputandeliminatestheconventionaltransformerfromthechargingprocess. “13.8kWmediumvoltageand

chargingcurrentupto500ampsarekeyfeaturestoenableenergyefficientandhighlyscalable

extremefastcharging,”Zhusaid.

MichaelStanding,DeltaElectronicsProgramManagerfortheextreme

fast-chargersystem,saidthat

eliminatingatraditionaltransformerinfavorofapowerconversionviaasolid-statetransformerequatestoabouta3percentefficiencygain.

“Whenyou’retalkingabout

400kW,threepercentstartsto

besignificant.Thelossesgooutin

heat,andyoupayfortheelectricity

thatyou’rewasting,”Standingsaid,

addingthattheextremefast-charging

EVBATTERYINNOVATIONSPECIALREPORT

Figure2:DeltaElectronics’Dr.CharlesZhu

standsnexttotheextremefast-chargingstand.(Image:DeltaElectronics)

systemwouldeventuallybealess-expensivewaytochargeavehicle.

DeltaElectronicshasmultiple

extremefast-chargersystempatents

relatingtopower-conversiontopologyandcontrol.Toreachproduction

readiness,thesystemwouldneed

toundergoadditionaldevelopment,

systemintegration,andtesting.

Regulatorycertificationalsoisrequired.

ChargingOn-the-Go

Thenthere’stheultimatetime-saver:chargingwithoutstoppingatall.A

roadway-embeddedwirelesschargingnetworkforEVsiscomingtoastretchofurbanhighwayinDetroit,markingapilot-programfirstonaU.S.publicroad.“Ourelectricvehiclereceiver

unitsaremodularandcompatiblewithpassengervehiclesandwithlight-,

medium-andheavy-dutycommercialvehicles,”saidOrenEzer,CEOof

Electreon,basedinTelAviv,Israel.

Michiganisexpectedtooperatethefirstelectrifiedroadwayinearly2025.

Electreon’spatentedwireless

in-roadEVchargingtechnology

alreadyisinuseinvariousEuropeandemonstrationprojects,includinga

0.7-mile(1.05km)intercitytollroadinItalyanda1-mi(1.65km)publicroad

Figure3:Electreonhasintegrateditstechnologyatthe‘Arenaofthefuture’projectinBrescia,Italy.ShownareanIvecoelectricbusandaFiat500-ebeingchargedwhiledriving.(Image:Electreon)

inSweden.Sweden’spolicymakers

aimtohave1,243miles(2,000km)

ofelectrifiedroadwayinoperationby2030.Detroit’selectrifiedroadway

willbenearMichiganCentral,a

mobility-innovationdistrictunder

developmentbyFordMotorCo.

“Thewirelesscharginginfrastructurewillsupportasuiteofusecases

involvingvariousvehicletypes,

includingautonomousvehicles,

anditwillsupportpartners,like

Ford,”saidJimBuczkowski,the

company’sExecutiveDirectorof

ResearchandAdvanceEngineering.

Cloud-BasedSystem

Monitoring

The$1.9million-plusMichiganprojectinvolvesonelaneofpublicroadwayforaminimumofonemile(1.6km).Aftertheexistingroadsurfaceisremoved,

rubber-coatedcoppercoilsegmentswillbeburied3.15inches(8cm)underanewroadsurface.“Non-electric

vehiclesareabletousetheroadwayasusualwithoutanydisruption,”saidDr.StefanTongur,Electreon’sVP.

Theroadway’scoilsegmentstransmitpowertoanEVundercarriage-mountedreceiverviamagneticresonance

inductionastheEVmovesorisparkeddirectlyabovethecoils.Apower-

managementunitlocatedeither

undergroundorabove-groundnear

theroadsidewilltransfertheenergyfromtheelectricgridtotheroadway’s

copper-coilinfrastructure.“Cloud-

basedmanagementsoftwareenableslivemonitoringandprovidessmart-charginginsights,”Ezerexplained.

Electreon’stechnologysolution

has19patentscoveringvarious

proprietaryaspects,includingthe

engineeredsystemarchitecture

andthecommunicationmechanismbetweenanEVfittedwithapowerreceiverandtheembeddedroadwaycoils.“Theintellectualpropertyof

ourvehiclereceiverswillbereleasedtoOEMsforfree,”Ezerpromised.

BoththebatterysizeandthenumberofreceiversconnectedtoanEVinfluencethechargingtime.“Thedrivingspeed

hasanegligibleeffectonthecharging

performance,”Ezerexplained.Hesaidtodate,Electreonhastesteditsreceiversuptoaspeedof49.7mph(80kph).Asanexample,ifacommercialtruckwithfivereceiversistravelingat37mph(60kph),37miles(60km)ofelectrifiedroadis

neededtofullychargethebattery.Ifthevehicleistravelingat12.4mph(20kph),12.4miles(20km)ofelectrifiedroad

areneededtofullychargethebattery.

LargervehiclescansupportmultipleElectreonreceivers.Forinstance,Class8truckscanbefittedwithuptosevenundercarriagereceivers.Busescouldhavethreereceivers,whilepassengervansmighthavetworeceivers.“The

numberofreceiversonanelectric

vehicledependsontheusecase,thevehiclesize,andthevehicletype,”

EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20239

EVRecharging

Figure4:AnElectreonemployeesignsher

nameonanin-roadchargingcoilbeforeroad

resurfacingiscompletedinGotland,Sweden.TheSmartroadGotlandprojectbeganoperationsinearly2020asapre-commercialdemonstrationofanelectrifiedroadway.(Image:Electreon)

Ezersaid.EachElectreonreceiverforheavy-dutyEVsiscapableofsupplyingupto25kWtothebattery.Basedonthepowertransferraterequirementsoflight-dutypassengerEVs,Electreonoffers7kWand11kWreceiveroptions.

MicheleMueller,MDOTSeniorProjectManagerforconnectedandautomatedvehicles,saidthatelectrifiedroadwayscouldacceleratetheadoptionofEVsbyenablingcontinuousvehicleoperationviasafeandsustainablepublicstreet

energyplatforms.“Awirelessin-roadchargingsystemwillberevolutionaryforEVsbypotentiallyextendinganEV’sbatterychargewithouthavingtostop(andplug-in),”Muellersaid.SheaddedthatelectrifiedroadwaysalsocouldreduceEVrangeanxiety.

Four-SeasonTesting

TheDetroitdemonstrationproject

willprovideafour-seasonvenuetotesthardwareandperformanceobjectives.

Electreon’sTongursaidthatbasedon

findingsfromongoingprojectsinEurope,weatherwon’tbeanissue.“Sincethe

(wireless)infrastructureliesbeneath

theroadway,theenergytransferisnotaffectedbysnowandice.Theroadcanbemaintained—plowed,salted,etc.—asusualwithoutaffectingthecoilsbeneaththeasphalt,”Tongursaid.

WirelesschargingofEVsisn’tnewtoAmerica,asthelargestfleetof

all-electrictransitbusesintheU.S.

useapatentedwirelesscharging

systemfromSaltLakeCity,Utah-

basedWAVE(WirelessAdvanced

VehicleElectrification).Forty-eight

ofSouthernCalifornia’sAntelope

ValleyTransitAuthority’s54BYD-

builtbusesarefittedwithWAVE

undercarriagereceivers.ThoseWAVE-compatibleelectricbusesusewirelesschargingdepotslocatedwithina

100square-mile(260km)area.

ThisarticlewaswrittenbyKami

Buchholz,anautomotivejournalistandlongstandingcontributortotheSAE

MediaGroup,whospecializesinawidespectrumoftechnologycoveragefor

theautomotiveandcommercial-vehicleindustries.Formoreinformation,visit.

ABOVE-GROUNDMANAGEMENTUNIT

UNDER-GROUNDMANAGEMENTUNIT

UNDER-ROADCOILSEGMENTS

Figure5:AnelectrictruckisbeingwirelesslychargedinGotland,Sweden,aspartofElectreon’s‘SmartroadGotland’project.Imageincludestechnologyoverviewgraphics.(Image:Electreon)

10NOVEMBER2023EVBATTERYINNOVATIONSPECIALREPORT

NOVEMBER202311

ProposedStandardsandMethodsforLeakTesting

Lithium-IonBatteryPacks

ittpl-erb

refrigerant-basedcoolingsystemscurrentlydonotexist.

L

ithium-ionbatterysystemsareanenergysourceforavarietyofelectric-vehicleapplicationsduetotheirhighenergydensityandlowdischargerates.Batterypacks,whethermadeofprismatic,

cylindrical,orpouchcells,arecooledbycommon

automotivethermalmanagementsystems.

Therapiddetectionofbatterypackcoolant-

systemleaksduringproductionoperationsis

essentialformeetingnecessarysafetyandservice-

liferequirements.Industrystandardsformeasuring

leakratesforbothglycol-basedandrefrigerant-based

coolingsystems,however,currentlydonotexist.

Thisarticlediscusseshowleaksinwater-glycolcoolingcircuitscanbedetectedreliablyandquantitatively

throughdetectionofescapingtestgasasanindicatorofethyleneglycolleaksandhowthetestgasleakrates

Preparingan

electric-vehicle

batterypackfor

finalassemblyat

Mercedes-Benz’s

newbatterymanu-facturingplantnearTuscaloosa,AL.

(Image:

Mercedes-Benz)

EVBATTERYINNOVATIONSPECIALREPORT

LeakTestingLithium-IonBatteryPacks

correlatetotheliquidleakage

ofthecoolingliquid.Influencingvariablessuchasleakagechanneldiameter,pressuredifference,andviscosityareconsidered,andgo/no-goleakratesaredescribed.

Introduction

Inthispaper,thetightness

requirementsthatarenecessaryina

coolantcircuitthatisnotoperated

withpurewaterareconsidered,but

withamixtureofwaterandglycol.Two

?Leakchannel[μm]

0.80

0.60

0.40

0.20

0.00

2.03.55.0

Overpressurecoolingsyste

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論