版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
心KEYSIGHT
TECHBRIEFS
SPECIALREPORT:
EVBATTERYINNOVATION
NOVEMBER2023
Sponsoredby
What’s
insidethis
specialissue?
EVLABTOUR
Poweringthe
Futureof
ElectricVehicles
Joinusforanexclusive
behind-the-scenestour
oftheULSolutions
andKeysightEVlabs
toseethetechdriving
high-powercharging,
batteries,andhowEVs
mightfuelthegrid.
Registernow
CONTENTS
FEATURES
2EVBatteries:RaisingtheBarforaNewEraofElectrifiedMobility
7AdvancingHigherSpeedsandNewTechniquesforEV
Recharging
11ProposedStandardsandMethodsforLeakTestingLithium-IonBatteryPacks
16EmergingPlasma
FIB-SEMTechniquesAdvancing
BatteryInnovation
20BattlefortheBox
TECHBRIEFS
25DevelopingHigh-Energy-DensityBatteriesUsingAluminumFoil
26UsingNano-EngineeringTechniquestoDevelopaSaferBattery
27NewPolymerCoatingCouldBoostEVBatteries
27EVBatteryBreakthrough:
10-MinuteCharge
ONTHECOVER
AnEVbatterypackthermal-
signaturerepresentationinadesignmodelingandsimulation(MODSIM)environment.
(Image:DassaultSystèmes)
EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20221
Figure1:Batterydesignandtestingmustbeabletoadapttoemergingcellformfactors,cellchemistries,andinteroperabilityrequirements.
takesaboutfiveminutes.Todeliveracomparableexperience,EVsneedtoextendrangeandincreasethe
availabilityoffastchargingoptions.
MoreindustrialDCfast-chargingstationsarecomingtomarket
becausetheycanchargeanEVto80%capacityinunder20minutes.Incontrast,anACchargerathomemighttakeallnighttoreachfull
charge.AreportbyGlobalMarketInsightsestimatesthatthemarketforDCfast-chargingstations
willgrowto$110billionby2032,fromonly$8.5billionin2022.
Infrastructurebuiltonfast
chargingstationsimpactseverythingfromhownewbatterycellsare
designedtohowbatterypacks
aretestedandmanufactured.NotonlydoEVbatteriesneedtobeabletohandlehighervoltages
forfastercharging,buttheymustalsobetestedinawiderrange
ofscenariostounderstand:
?Environmentalimpacts
onchargingspeed
?Howfrequentfast-charging
impactsbatterylife
Forexample,someearlystudies
exploringtheweatherimpactonDC
fastchargingfoundthatchargingratesdegradeddramaticallyinextremely
coldweather.ThishasasignificantimpactnotonlyontheconsumerEVmarket,butespeciallyonschedule-drivenheavytransportfleetswhichuselarge-capacitybatteries.
Theincreaseddemandfor
higherpowerchargingandvariable
environmentalconditionswillnecessitatebatterydevelopmentandtestingthat
incorporatestheseevolvingrequirements.
Investinginfuture-ready
batterycelltesting
ThenextgenerationofEVbatteriesstartswithbettercells.Whilebatterycostsaredecreasing,mostLi-ion
batteriesusecylindricalcellsbecausetheyarematureandlessexpensivetomanufacture.However,duetotheir
shape,cylindricalbatterycellshave
limitationsintermsofpower.Thenext
eraofEVbatteriesneedsmoreenergy
densitytoimproverange,alongwith
morepowertosupportfastcharging.
OEMsandbatterydevelopersare
researchingnewformfactorsand
cellchemistriestoincreasebattery
densityandpower.Prismaticcells
aregainingpopularitybecausethey
arelargerthancylindricalcellsand
candelivermorepowerandstore
moreenergyinthesamevolume.
Newbatterychemistriescould
alsoreducecarbonemissionsduring
manufacturing,whilekeepingor
increasingenergydensity.For
example,reducingtheamountof
nickelinlithium-nickel-manganese-
oxidecathodesandreplacingitwitha
cheaperandmoreabundantalternative
likemanganesecanreducecosts
aswellasproductionemissions.
Theseinnovationsimpactbattery
celldesignandtestinginafewways:
?Newbatterycellformfactors:
Prismatic,pouch,round,andeven
buttoncellscreatesignificantchangesindimensionsandtablocations.
EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20233
EVBatteries
Figure2:Eachstageofthedevelopmentcycleneedstestenvironmentsthatcansupporttherequiredvoltage.
Thesechangesimpacttheway
thesecellsneedtobeconnected
tothetestequipment.Therefore,flexiblefixturingiscrucialtoensureadaptabilityevenascelldesigns
changefrommodeltomodel.
?Newcellchemistries:Thereisintensiveresearchtodevelopnewcellchemistrieswithgreaterenergydensity,sustainableproduction,orapplication-specific
advantages.However,toproduce
cellsusingthesenewelectrochemicalcombinations,differentvoltage
boundariesandcharge-discharge
ratesmustbecharacterizedbeforeselectingtheoptimalelectrochemicalcompositiontomeetvarious
performanceandcostparameters.
?Fastercharging:Fastercharging
leadstohighercurrentdemandsandfastertransientsonthe
celllevel.Testequipmentmustthereforekeepupwithhigher
constantcurrentsandpulses.
?Testinglonger-lastingbatteries:Testinglonger-lastingbatteries
requireslongertestcyclestoverifythemaximumcyclecountand
channeloccupation.Thisrequiresnumerousroundsofchargeanddischarge.Cellcyclingequipmentwithregenerativepowerwillhelpreduceoperatingelectricitycosts.
Newapproachestobattery
developmentcanhelpcompanies
researchanddeploynewformfactors
TheabilitytochargeEVsataveryfastrateisthekeytoelectrifyingmobilityacrosstheU.S.
4NOVEMBER2023
andchemistriesfasterandwithlessrisk.Forexample,testingbatterycellsusingemulationsofreal-worldconditionswillensuretheperformanceofcellsintheirintendedusecases.Testsystemsmust
handlehundredsofcellspecimensof
differentformfactorssimultaneously,
withindividualchannelcontrolfor
greaterflexibility.Testingshouldalso
becustomizabletocharacterizecell
performanceunderdifferentorientations,climates,anddriveprofilesderivedfromstandardsorfieldmeasurements.
Meetinghigh-powerbatterypacktestingrequirements
Asindividualbatteriesareassembledintomodulesandpacks,testingshifts
fromcharacterizinginternalcelldynamicstoanalyzingpackinterconnections
betweenmodulesandothervehicle
electronics.Othermeasurementsincludedeterminingthepack’sdurability,
performanceunderdifferentconditions,peakpower,andfailurerisks.
Atthepacklevel,fasterchargingnecessitatestestsystemsthat
cansupporthighervoltagesto
increasepowerwithoutsignificantlyincreasingcurrent.Anexampleofthatistheshiftfrom400Vsystemsto800Vsystems,andthepotentialemergenceof1,000Vsystems.
Theintroductionofnewcell
chemistriesalsocreatesdifferent
voltageandcurrentrangesatthepacklevel.Withnewwaysofutilizingpacksincars,multi-channelsystems,and
varyingpowerdemandsareemerging.Packswithbuilt-inrelaycontacts
andchargingportsarebecoming
morecommon.Thisrequiresthe
implementationofmulti-channelpacktestsystemsandparalleloperations.
Itisalsointerestingtonotethatthetrendofintegratingcellsinto
packsisgainingpopularity.Tests
thatweretraditionallyperformedatthemodulelevelarenowcarriedoutonpacks,andindividualcell
measurementsarebecomingmoreimportantinthisapplicationmodel.
FacilitatingtheseadvancementsinEVbatterydevelopmentrequiresastrategictechnologyroadmapthatcansupport
EVBATTERYINNOVATIONSPECIALREPORT
ACwallcharger
Cellmanufacturing
DCchargingstation
Designvalidation/characterization
ofbatterycells,modulesandpacks
Low-voltageMotor
systems
Powertrain
inverter
DC-DCconverter
y
Onboardcharger
Batterpack
Storageinverter
Energystorage
PVinverter
Photovoltaicarrays
Electricitygrid
Figure3:AutomotivemanufacturersareincreasinglyusingemulationstovalidateEVconformancewithdifferentpartsoftheecosystem.
currentandupcomingEVtrends,suchasvehicle-to-grid(V2G)applications.
Emulatingrealworldecosystembeforehittingtheroad
AstheEVecosystemevolves
toincludefasterchargingstationsandintegrationwiththegrid,thebatterymanagementsystemmustbeabletoaccountforawider
rangeofreal-worldscenariosto
ensuresafebatteryoperations
andtohelpextendbatterylife.
Besidestestingthepackarchitecture,batterydesignersmustcarryout
extensiveteststoemulatereal-
worldenvironments,suchas:
?Interactionofallthecomponents
involvedwiththepack,and
theirmutualimpact
?Internalcommunicationofallelectricalandmechanicalcomponents
?Externalcommunicationwiththechargingstationandgrid
?ThermalandelectricalreactionsofthebatterypackandthermalmanagementAnapplicationareathatisgaining
momentumisV2G-enabledEVs,whereinsteadoftheclassicalone-waypowerflowfromthechargingstationtotheEVbattery,the
batterycansupplyelectricitybacktothepowergridtohelpbalancethegridintimesofhighusage.
StudieshavebeencarriedouttoseeiffrequentusageoftheEVinV2G-
Figure4:EmulatingchargingstationsinthelabspeedsEVconformancetesting.
modewillcausecapacityandpowerfade.Whileusefulforearlyprognosis,itisalsoimportanttoanalyzethe
impacttowardsthebattery’send-of-lifestagewherethedegradationratecanbecomeexponential.
Advancementsinemulation
capabilitiesarehelpingbattery
designerstestreal-worldscenarios
fasterandmoreaccurately.Insteadofusingactualdevices,developersnowrelyonemulatorstotestfordynamic,electrical,andevenclimaticstress.
Emulatingawiderangeof
scenariosrequiresasystemthatcanhandlethousandsoftestchannels
simultaneously.Thesystemshould
alsointegratewiththecompany’slab
managementsoftwareplatformso
labmanagerscanbetterutilizetheirresourcesandthemassiveamountofdatacollectedfromeachcell,module,orpacktoimprovedesigniterations.
Whileextensivesystem-wide
emulationtestingintheresearch
anddesignphasecanhelpensure
performanceandsafetyspecificationsaremet,qualitycheckpointsalong
thehigh-volumemanufacturingprocessalsoplayacriticalroleinthefinalbatteryqualityandcost.
Ensuringqualityfromblueprinttoproduction
Thetransitionfrombatterydesigntomanufacturingrequiresathoroughly
EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20235
EVBatteries
Figure5:Cellcyclingandagingarethemosttime-consumingstagesofthecomplexbatterycellmanufacturingprocess.
validateddesignblueprintfromthelabtothebatterygigafactory,whichfacesadifferentsetofchallenges.
Forgigafactories,throughputisavitalbarometerofproductivity.IntheLi-ioncellmanufacturingprocess,thecellformationandagingstagesarethemosttime-consuming.Duringcellaging,manufacturersmustmeasurethecell’sself-dischargerateeven
whenitisnotconnectedtoany
device.Thepurposeistoidentify
errantcellsthatexhibitabnormal
orexcessiveself-discharge,since
such“bad”cellsadverselyaffecttheperformanceofmodulesandpacks.
Acellcantakedays,weeks,or
monthstoexhibititsself-discharge.
However,inatimeandcost-sensitivemanufacturingenvironment,the
traditionalwayoftrackingself-
dischargeusingtheOpenCircuit
Voltage(OCV)methodisnotpractical.
Instead,manufacturersareusinganewpotentiostaticmeasurementmethodtodirectlymeasurethe
cell’sinternalself-dischargecurrent.Thismethodtypicallytakeshoursor
6NOVEMBER2023
less—savingtimeandpreciousfloorspacebynothavingtoholdthecellsforthisvitalqualitygatecheck.
Producingmorepowerful
batterycellsthatcanchargefasterrequiresadditionalcellcyclinginthegigafactoryandmoredata
tocaptureandsortthroughto
determinethecell'scyclelife
andhowthechargerateaffects
thecell'slife.Ascellcapacity
quicklyincreases,researchersandmanufacturerswillalsoneedto
sourceandsinklargercurrents.
Tocircumventcostlypower
consumption,moderncellcyclersemployregenerativepower,wherepowerregeneratedduringcell
dischargeisrecycledbacktothe
grid,therebyreducingnetenergy
consumptiontoloweroperating
costs.Thisprocessalsogenerates
lessheatintheelectronics,
reducingtheneedtoremoveheat
fromtheproductionfacility.
Witheachstepofthecell
formattingandagingprocessinthegigafactory,ensuringinvestmentin
equipmentthatimprovesthroughputandhelpslowerproductioncosts
willcontributetowardstheaimtolowertheoverallEVbatterycost.
PoweringaheadtowardsbetterbatteriesforEVs
Asvehicleelectrificationcontinuestoadvance,batterydevelopers
andmanufacturersmustpre-emptnewrequirementsintheirbatterytestingcapabilities.Increased
EVbatterypowerandcapacity,
chargingdemands,andproductionoptimizationrequireresearchers
andmanufacturerstomeetthese
demandswhilealsoplanningahead.
Theseinnovationswillundoubtedlyhelptofurtherscalethedevelopmentandbuildingofbetterbatteries
topowernext-generationelectric
vehiclesthatmeetconsumer
expectationsforlongerrangeand
fastercharging,aswellasthebroaderautomotiveindustry’sgoaltowards
asustainableelectricfuture.
Formoreinformationvisit
/find/e-mobility.
EVBATTERYINNOVATIONSPECIALREPORT
AdvancingHigherSpeedsandNewTechniques
forEVRecharging
TwonewinitiativesaddressmethodstomakeEVchargingfaster—orrequireno“downtime”atall.
T
heabilitytochargeelectricvehiclesataveryfast
rateisakeytoelectrifyingmobilityacrosstheU.S.
It’safocusoftheU.S.Dept.ofEnergy’sExtremeFastChargerproject,whosepotentialwasdemonstrated
convincinglyonaproductionGMCHummerEVatthe
AmericanCenterforMobility(ACM)inYpsilanti,MI,lastfall.
TheHummerEVobservedbySAEMediafeaturedan
800-voltelectricalarchitecture—consideredstate-of-
the-artforDC“extremefast”charging.BothGMandDeltaElectronics(Americas)Ltd.,whichprovidedthecharging
system,arepartneringwithDoEontheprogram.The
resultsofthedemonstrationwere“phenomenal,”saidJimKhoury,SeniorManagerofGlobalElectrificationatGM.
Theparametersfortheextremefastchargerwere
establishedinanearliertestthatalsoinvolveda
HummerEV.Thattest,spanningnineminutesat500
ampsatanaverage725volts,yieldednearly55kWh
beforetheEV’sbatterystartedtolimitthecurrent.
“WhileotherDCfastchargerscanalsochargeat500
amps,thepowercapabilityislower,soitpower-limits
EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20237
EVRecharging
Figure1:DeltaElectronics’CharlesZhuandGM’sJimKhouryrechargeaGMCHummerEVwiththe400-kWextremefastchargerduringademoattheAmericanCenterforMobility.(Image:DeltaElectronics)
soonerinthechargecycle.Ourpowerlimitis400kW,”saidDr.Charles
Zhu,VPoftheAutomotiveBusinessGroupforDeltaElectronics,andthePrincipalInvestigatorfortheDoE
project.Hesaidthatgenerally,theDeltaextremefastchargingsystemcandeliver66.7kWhin10minutes.
Medium-VoltageBenefits
DeltaElectronicsdevelopedthe
solid-statetransformer(SST),power
cabinet,andthechargingstand/
dispenserthatarevitaltotheproject.TheSSTconvertsthe“mediumvoltage”(13,200VAC)into1000VDC.The
powercabinetusestheDCvoltagetocreateacurrentsource,providingupto500amps.Thedispenser
communicateswiththevehicleandprovidescurrenttothebatterypack.
Current-generationfastchargersareconsideredlow-voltage.Tesla’sSupercharger,forexample,runs
at480V.Themovetomedium
8NOVEMBER2023
voltagepresentedhurdles,explainedZhu.“Mediumvoltagecanjump
awidergapbecauseofitshigherpotentialenergy,”hesaid,notingspecialwire,materials,anddesignswereneededtoaccommodate
thehighervoltages.Fromasafetystandpoint,theDoE-Deltaextremefastchargerhasamedium-voltageswitchtoisolatethesystemfromthegrid.Alicensedelectrician
withproperpersonalprotection
equipmentmustclosetheswitch.
“Ifsomethinggoeswrong,the‘blastradius’isabout30ft[91.4m],whichiswhyallothersmuststandclearwhentheswitchisactuated,”Zhusaid.
Therearestrongreasonstooptfor
mediumvoltage,accordingtoZhu.“Theadvantagesthatwegainfrompulling
directlyfrommediumvoltageincludehigherefficiency,asaconventional
transformercanbeabout95percentefficient,”hesaid.Aconventional
transformerneedstohaveenergy
passthroughaconversionstage—
anotherloss—tocreatetheDCcurrentneededtochargeavehiclebattery,headded.Themedium-voltagesystem
providesanapproximate96.5percentoutputandeliminatestheconventionaltransformerfromthechargingprocess. “13.8kWmediumvoltageand
chargingcurrentupto500ampsarekeyfeaturestoenableenergyefficientandhighlyscalable
extremefastcharging,”Zhusaid.
MichaelStanding,DeltaElectronicsProgramManagerfortheextreme
fast-chargersystem,saidthat
eliminatingatraditionaltransformerinfavorofapowerconversionviaasolid-statetransformerequatestoabouta3percentefficiencygain.
“Whenyou’retalkingabout
400kW,threepercentstartsto
besignificant.Thelossesgooutin
heat,andyoupayfortheelectricity
thatyou’rewasting,”Standingsaid,
addingthattheextremefast-charging
EVBATTERYINNOVATIONSPECIALREPORT
Figure2:DeltaElectronics’Dr.CharlesZhu
standsnexttotheextremefast-chargingstand.(Image:DeltaElectronics)
systemwouldeventuallybealess-expensivewaytochargeavehicle.
DeltaElectronicshasmultiple
extremefast-chargersystempatents
relatingtopower-conversiontopologyandcontrol.Toreachproduction
readiness,thesystemwouldneed
toundergoadditionaldevelopment,
systemintegration,andtesting.
Regulatorycertificationalsoisrequired.
ChargingOn-the-Go
Thenthere’stheultimatetime-saver:chargingwithoutstoppingatall.A
roadway-embeddedwirelesschargingnetworkforEVsiscomingtoastretchofurbanhighwayinDetroit,markingapilot-programfirstonaU.S.publicroad.“Ourelectricvehiclereceiver
unitsaremodularandcompatiblewithpassengervehiclesandwithlight-,
medium-andheavy-dutycommercialvehicles,”saidOrenEzer,CEOof
Electreon,basedinTelAviv,Israel.
Michiganisexpectedtooperatethefirstelectrifiedroadwayinearly2025.
Electreon’spatentedwireless
in-roadEVchargingtechnology
alreadyisinuseinvariousEuropeandemonstrationprojects,includinga
0.7-mile(1.05km)intercitytollroadinItalyanda1-mi(1.65km)publicroad
Figure3:Electreonhasintegrateditstechnologyatthe‘Arenaofthefuture’projectinBrescia,Italy.ShownareanIvecoelectricbusandaFiat500-ebeingchargedwhiledriving.(Image:Electreon)
inSweden.Sweden’spolicymakers
aimtohave1,243miles(2,000km)
ofelectrifiedroadwayinoperationby2030.Detroit’selectrifiedroadway
willbenearMichiganCentral,a
mobility-innovationdistrictunder
developmentbyFordMotorCo.
“Thewirelesscharginginfrastructurewillsupportasuiteofusecases
involvingvariousvehicletypes,
includingautonomousvehicles,
anditwillsupportpartners,like
Ford,”saidJimBuczkowski,the
company’sExecutiveDirectorof
ResearchandAdvanceEngineering.
Cloud-BasedSystem
Monitoring
The$1.9million-plusMichiganprojectinvolvesonelaneofpublicroadwayforaminimumofonemile(1.6km).Aftertheexistingroadsurfaceisremoved,
rubber-coatedcoppercoilsegmentswillbeburied3.15inches(8cm)underanewroadsurface.“Non-electric
vehiclesareabletousetheroadwayasusualwithoutanydisruption,”saidDr.StefanTongur,Electreon’sVP.
Theroadway’scoilsegmentstransmitpowertoanEVundercarriage-mountedreceiverviamagneticresonance
inductionastheEVmovesorisparkeddirectlyabovethecoils.Apower-
managementunitlocatedeither
undergroundorabove-groundnear
theroadsidewilltransfertheenergyfromtheelectricgridtotheroadway’s
copper-coilinfrastructure.“Cloud-
basedmanagementsoftwareenableslivemonitoringandprovidessmart-charginginsights,”Ezerexplained.
Electreon’stechnologysolution
has19patentscoveringvarious
proprietaryaspects,includingthe
engineeredsystemarchitecture
andthecommunicationmechanismbetweenanEVfittedwithapowerreceiverandtheembeddedroadwaycoils.“Theintellectualpropertyof
ourvehiclereceiverswillbereleasedtoOEMsforfree,”Ezerpromised.
BoththebatterysizeandthenumberofreceiversconnectedtoanEVinfluencethechargingtime.“Thedrivingspeed
hasanegligibleeffectonthecharging
performance,”Ezerexplained.Hesaidtodate,Electreonhastesteditsreceiversuptoaspeedof49.7mph(80kph).Asanexample,ifacommercialtruckwithfivereceiversistravelingat37mph(60kph),37miles(60km)ofelectrifiedroadis
neededtofullychargethebattery.Ifthevehicleistravelingat12.4mph(20kph),12.4miles(20km)ofelectrifiedroad
areneededtofullychargethebattery.
LargervehiclescansupportmultipleElectreonreceivers.Forinstance,Class8truckscanbefittedwithuptosevenundercarriagereceivers.Busescouldhavethreereceivers,whilepassengervansmighthavetworeceivers.“The
numberofreceiversonanelectric
vehicledependsontheusecase,thevehiclesize,andthevehicletype,”
EVBATTERYINNOVATIONSPECIALREPORTNOVEMBER20239
EVRecharging
Figure4:AnElectreonemployeesignsher
nameonanin-roadchargingcoilbeforeroad
resurfacingiscompletedinGotland,Sweden.TheSmartroadGotlandprojectbeganoperationsinearly2020asapre-commercialdemonstrationofanelectrifiedroadway.(Image:Electreon)
Ezersaid.EachElectreonreceiverforheavy-dutyEVsiscapableofsupplyingupto25kWtothebattery.Basedonthepowertransferraterequirementsoflight-dutypassengerEVs,Electreonoffers7kWand11kWreceiveroptions.
MicheleMueller,MDOTSeniorProjectManagerforconnectedandautomatedvehicles,saidthatelectrifiedroadwayscouldacceleratetheadoptionofEVsbyenablingcontinuousvehicleoperationviasafeandsustainablepublicstreet
energyplatforms.“Awirelessin-roadchargingsystemwillberevolutionaryforEVsbypotentiallyextendinganEV’sbatterychargewithouthavingtostop(andplug-in),”Muellersaid.SheaddedthatelectrifiedroadwaysalsocouldreduceEVrangeanxiety.
Four-SeasonTesting
TheDetroitdemonstrationproject
willprovideafour-seasonvenuetotesthardwareandperformanceobjectives.
Electreon’sTongursaidthatbasedon
findingsfromongoingprojectsinEurope,weatherwon’tbeanissue.“Sincethe
(wireless)infrastructureliesbeneath
theroadway,theenergytransferisnotaffectedbysnowandice.Theroadcanbemaintained—plowed,salted,etc.—asusualwithoutaffectingthecoilsbeneaththeasphalt,”Tongursaid.
WirelesschargingofEVsisn’tnewtoAmerica,asthelargestfleetof
all-electrictransitbusesintheU.S.
useapatentedwirelesscharging
systemfromSaltLakeCity,Utah-
basedWAVE(WirelessAdvanced
VehicleElectrification).Forty-eight
ofSouthernCalifornia’sAntelope
ValleyTransitAuthority’s54BYD-
builtbusesarefittedwithWAVE
undercarriagereceivers.ThoseWAVE-compatibleelectricbusesusewirelesschargingdepotslocatedwithina
100square-mile(260km)area.
ThisarticlewaswrittenbyKami
Buchholz,anautomotivejournalistandlongstandingcontributortotheSAE
MediaGroup,whospecializesinawidespectrumoftechnologycoveragefor
theautomotiveandcommercial-vehicleindustries.Formoreinformation,visit.
ABOVE-GROUNDMANAGEMENTUNIT
UNDER-GROUNDMANAGEMENTUNIT
UNDER-ROADCOILSEGMENTS
Figure5:AnelectrictruckisbeingwirelesslychargedinGotland,Sweden,aspartofElectreon’s‘SmartroadGotland’project.Imageincludestechnologyoverviewgraphics.(Image:Electreon)
10NOVEMBER2023EVBATTERYINNOVATIONSPECIALREPORT
NOVEMBER202311
ProposedStandardsandMethodsforLeakTesting
Lithium-IonBatteryPacks
ittpl-erb
refrigerant-basedcoolingsystemscurrentlydonotexist.
L
ithium-ionbatterysystemsareanenergysourceforavarietyofelectric-vehicleapplicationsduetotheirhighenergydensityandlowdischargerates.Batterypacks,whethermadeofprismatic,
cylindrical,orpouchcells,arecooledbycommon
automotivethermalmanagementsystems.
Therapiddetectionofbatterypackcoolant-
systemleaksduringproductionoperationsis
essentialformeetingnecessarysafetyandservice-
liferequirements.Industrystandardsformeasuring
leakratesforbothglycol-basedandrefrigerant-based
coolingsystems,however,currentlydonotexist.
Thisarticlediscusseshowleaksinwater-glycolcoolingcircuitscanbedetectedreliablyandquantitatively
throughdetectionofescapingtestgasasanindicatorofethyleneglycolleaksandhowthetestgasleakrates
Preparingan
electric-vehicle
batterypackfor
finalassemblyat
Mercedes-Benz’s
newbatterymanu-facturingplantnearTuscaloosa,AL.
(Image:
Mercedes-Benz)
EVBATTERYINNOVATIONSPECIALREPORT
LeakTestingLithium-IonBatteryPacks
correlatetotheliquidleakage
ofthecoolingliquid.Influencingvariablessuchasleakagechanneldiameter,pressuredifference,andviscosityareconsidered,andgo/no-goleakratesaredescribed.
Introduction
Inthispaper,thetightness
requirementsthatarenecessaryina
coolantcircuitthatisnotoperated
withpurewaterareconsidered,but
withamixtureofwaterandglycol.Two
?Leakchannel[μm]
0.80
0.60
0.40
0.20
0.00
2.03.55.0
Overpressurecoolingsyste
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 節(jié)能減排法律宣傳資助合同
- 車輛服務合同的修改
- 定制商品采購合同
- 電力分包合同的法律風險與防范
- 養(yǎng)老機構(gòu)服務合同問答
- 個人購車貸款資金額度借款合同
- 農(nóng)村養(yǎng)牛合作合同樣本
- 坯布訂購合同送貨詳情
- 中介服務合同中的合同修改與補充
- 公司擔保保證金協(xié)議
- 國標《電化學儲能電站檢修試驗規(guī)程》
- 車輛救援及維修服務方案
- 三體讀書分享
- 2024年內(nèi)蒙古巴彥淖爾市交通投資集團有限公司招聘筆試參考題庫含答案解析
- 2024年南平實業(yè)集團有限公司招聘筆試參考題庫附帶答案詳解
- 咖啡學概論智慧樹知到期末考試答案2024年
- (高清版)DZT 0217-2020 石油天然氣儲量估算規(guī)范
- 借助力學原理設計簡易杠桿裝置
- 深圳港口介紹
- 2024年執(zhí)業(yè)醫(yī)師考試-中醫(yī)執(zhí)業(yè)助理醫(yī)師筆試歷年真題薈萃含答案
- 2024年工貿(mào)行業(yè)安全知識考試題庫500題(含答案)
評論
0/150
提交評論