




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022年江蘇省昆山市中考數(shù)學模擬測評卷(I)
考試時間:90分鐘;命題人:數(shù)學教研組
考生注意:
1、本卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,滿分100分,考試時間90分鐘
2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上
3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新
的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。
第I卷(選擇題30分)
一、單選題(10小題,每小題3分,共計30分)
1、如圖,直線與切相交于點。,若Nl+N2=80。,則N1等于()
A.40°B.60°C.70°D.80°
2、下列宣傳圖案中,既中心對稱圖形又是軸對稱圖形的是()
(§)
戴口罩少出門
講衛(wèi)生少聚焦
IS■
3、如圖,點尸在比上,BOEF,AB-AE,/廬則下列角中,和2NC度數(shù)相等的角是
A.ZAFBB.ZEAFC.ZEACD.ZEFC
4、如圖,將一副三角板平放在一平面上(點。在3c上),則N1的度數(shù)為()
C.90°D.105°
5、如圖,等腰三角形ABC的底邊BC長為4,面積是20,腰AC的垂直平分線EF分別交AC,AB邊
于E,尸點,若點。為3c邊的中點,點M為線段所上一動點,則ACDM周長的最小值為
()
B
10、如圖是一個運算程序,若X的值為-1,則運算結果為()
第n卷(非選擇題70分)
二、填空題(5小題,每小題4分,共計20分)
1、若反比例函數(shù)y=的圖象位于第一、第三象限,貝必的取值范圍是
X
2、一張長方形紙片沿直線AB折成如圖所示圖案,已知4=50。,則NO8A=
3、如圖,將邊長為2的正方形力比'放在平面直角坐標系中,。是原點,點4的橫坐標為1,則點C
的坐標為
4,已知五=9',貝□=—.
5、如圖,射線3£>,CE相交于點A,則D8的內(nèi)錯角是
三、解答題(5小題,每小題10分,共計50分)
1、如圖,已知函數(shù)%=x+l的圖像與y軸交于點4一次函數(shù)%=Ax+人的圖像經(jīng)過點6(0,-1),
并且與x軸以及力=x+l的圖像分別交于點C、〃,點〃的橫坐標為1.
(2)在y軸上是否存在這樣的點只使得以點只B、〃為頂點的三角形是等腰三角形.如果存在,
求出點戶坐標;如果不存在,說明理由.
(3)若一次函數(shù)為=展+〃的圖像經(jīng)過點且將四邊形4m9的面積分成1:2.求函數(shù)%=儂+〃
的表達式.
2、小欣在學習了反比例函數(shù)的圖象與性質(zhì)后,進一步研究了函數(shù)尸標的圖象與性質(zhì).其研究過程
如下:
①列表:下表是x與y的幾組對應值,其中〃?=
_34_2
X???-4-3-2012???
~2-3~3~2
2_
y???-1-2-332m???
~3一523
②描點:根據(jù)表中的數(shù)值描點(x,y),請補充描出點(0,相);
③連線:用平滑的曲線順次連接各點,請把圖象補充完整.
(2)探究函數(shù)性質(zhì).
判斷下列說法是否正確(正確的填",錯誤的填“X”).
①函數(shù)值了隨x的增大而減??;()
②函數(shù)圖象關于原點對稱;()
③函數(shù)圖象與直線x=-1沒有交點.()
(3)請你根據(jù)圖象再寫一條此函數(shù)的性質(zhì):.
3、如圖,在AABC中,ZACB=90°,將AABC繞點C旋轉(zhuǎn)得到SEC,連接必
(1)如圖1,點E恰好落在線段AB上.
①求證:ABCESAACD;
②猜想NC4E和加處的關系,并說明理由;
7
⑵如圖2,在旋轉(zhuǎn)過程中,射線蔗交線段然于點尸,若AC=2BC=8,EF、求少的長.
5、某商品每天可售出300件,每件獲利2元.為了盡快減少庫存,店主決定降價銷售.根據(jù)經(jīng)驗可
知,如果每件降價0.1元,平均每天可多售出20件,店主要想平均每天獲利500元,每件商品應降
價多少元?
-參考答案-
一、單選題
1,A
【解析】
【分析】
根據(jù)對頂角的性質(zhì),可得/I的度數(shù).
【詳解】
解:由對頂角相等,得
Z1=Z2,又/1+/2=80°,
.*.Zl=40°.
故選:A.
【點睛】
本題考查的是對頂角,掌握對頂角相等這一性質(zhì)是解決此題關鍵.
2、C
【解析】
【分析】
根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.把一個圖形繞某一點旋轉(zhuǎn)
180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖
形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.
【詳解】
解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;
B.不是軸對稱圖形,也不是中心對稱圖形,故本選項不合題意;
C.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意;
D.不是軸對稱圖形,也不是中心對稱圖形,故本選項不合題意.
故選:C.
【點睛】
本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后
可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.
3、D
【解析】
【分析】
根據(jù)+S證明△/?!?;由全等三角形的性質(zhì)和等腰三角形的性質(zhì)即可求解.
【詳解】
解:在和△4?。中,
AB=AE
<NB=NE,
BC=EF
:./\AEF^/\ABC(SIS),
...止4C,AAFE=AC,
:.SZAFC,
:./EF人AFE+NAFO2NC.
故選:D.
【點睛】
本題主要考查了全等三角形的判定與性質(zhì),等腰三角形的判定和性質(zhì),熟練掌握全等三角形的判定與
性質(zhì)是解決問題的關鍵.
4、B
【解析】
【分析】
根據(jù)三角尺可得NEDB=45。,ZABC=30。,根據(jù)三角形的外角性質(zhì)即可求得N1
【詳解】
解:ZEDB=45°,ZABC=30°
Nl=ZEDB+ZABC=75°
故選B
【點睛】
本題考查了三角形的外角性質(zhì),掌握三角形的外角性質(zhì)是解題的關鍵.
5、C
【解析】
【分析】
連接4。,由于是等腰三角形,點〃是a'邊的中點,故4?比;再根據(jù)三角形的面積公式求出
4?的長,再根據(jù)跖是線段力。的垂直平分線可知,點C關于直線跖的對稱點為點4,故4?的長為
6出血9的最小值,由此即可得出結論.
【詳解】
解:連接44
:△46。是等腰三角形,點。是先■邊的中點,
:.ADYBC,
?*-5ABC=1BC-AD=1x4x/1£>=20,解得力大10,
???跖是線段4C的垂直平分線,
.?.點,關于直線廳'的對稱點為點A,
的長為6機"的最小值,
,△以"的周長最短=0機◎a>49^8C=10+gx4=10+2=I2.
故選:C.
【點睛】
本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關鍵.
6,A
【解析】
【分析】
根據(jù)平行線的判定逐個判斷即可.
【詳解】
解:A、VZ1=Z2,Zl+Z3=Z2+Z5=180°,
.?.N3=N5,
因為“同旁內(nèi)角互補,兩直線平行“,
所以本選項不能判斷AB//CD-,
B、VZ3=Z4,
:.AB//CD,
故本選項能判定46〃切;
C、VZ3+Z5=180°,
:.ABHCD,
故本選項能判定AB〃CD;
D、DN1=N5,
:.AB//CD,
故本選項能判定46〃切;
故選:A.
【點睛】
本題考查了平行線的判定,能靈活運用平行線的判定進行推理是解此題的關鍵,平行線的判定定理
有:①同位角相等,兩直線平行,②內(nèi)錯角相等,兩直線平行,③同旁內(nèi)角互補,兩直線平行.
7、A
【解析】
【分析】
如圖:過。作血04垂足為瓦然后求得/況室30°,再根據(jù)含30°角直角三角形的性質(zhì)求得
OE,最后運用勾股定理求得"即可解答.
【詳解】
解:如圖:過C作四,力,垂足為£,
■:菱形OMC,04=4
二0(=0A=4
,:ZAOC=60°,
.,./龍戶30°
,/0(=4
:.密2
誨yj0C2-0E2=^42-22=2百
.?.點C的坐標為(2,26).
故選A.
【點睛】
本題主要考查了菱形的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識點,作出輔助線、求出
OE、2的長度是解答本題的關鍵.
8、C
【解析】
【分析】
根據(jù)各個選項中的函數(shù)解析式,可以判斷出y隨x的增大如何變化,從而可以解答本題.
【詳解】
解:A.在y=2x中,y隨x的增大而增大,故選項4不符合題意;
B.在y=x-3中,y隨x的增大與增大,不合題意;
C.在y=j(x>0)中,當x>0時,y隨”的增大而減小,符合題意;
D.在y=d—4x(x>2),x>2時,y隨x的增大而增大,故選項〃不符合題意;
故選:C.
【點睛】
本題考查了正比例函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)、反比例函數(shù)的性質(zhì),正確掌握相關函數(shù)增減性是解
題關鍵.
9、A
【解析】
【分析】
求出a與b的值即可求出答案.
【詳解】
“1_6+2廣r-
解:*=及1一(石+2)(石一2)=42,6=2+5
??3^—b,
故選:A.
【點睛】
本題考查了分母有理化,解題的關鍵是求出a與人的值,本題屬于基礎題型.
10、A
【解析】
【分析】
根據(jù)運算程序,根據(jù)絕對值的性質(zhì)計算即可得答案.
【詳解】
,/-K3,
-3-=4
故選:A.
【點睛】
本題考查絕對值的性質(zhì)及有理數(shù)的加減運算,熟練掌握絕對值的性質(zhì)及運算法則是解題關鍵.
二、填空題
1,k>\
【解析】
【分析】
根據(jù)反比例函數(shù)的性質(zhì)解答.
【詳解】
解:?.?反比例函數(shù)>的圖象位于第一、第三象限,
x
%>1,
故答案為:k>1.
【點睛】
此題考查了反比例函數(shù)的性質(zhì):當力0時,函數(shù)圖象的兩個分支分別在第一、三象限內(nèi);當K0時,
函數(shù)圖象的兩個分支分別在第二、四象限內(nèi).
2、65°##65度
【解析】
【分析】
根據(jù)折疊的性質(zhì)可得出2ZOBA+Z}=180。,代入N1的度數(shù)即可得出答案.
【詳解】
解:由折疊可得出2NO84+4=180。,
?.?/1=50。,
:.ZOBA=65°,
故答案為:65°.
【點睛】
本題考查了翻折變換的性質(zhì),熟練掌握翻折變換的性質(zhì)是解題的關鍵.
京-E
3、(-6,1)
【解析】
【分析】
首先過點C作Cx軸于點〃過點4作力此x軸于點反易證得△力0匡△仇力(A4S),則可得
CAO—,吩/后石,繼而求得答案.
【詳解】
解:過點。作3_Lx軸于點D,過點A作4?_Lx軸于點E,
則/切仁//£390°,
.?.NM?屐辦=90°,
?四邊形如況'是正方形,
AO(=OA,/力特90°,
.?./C6!^N4密90°,
:./OCANAOE,
在△/應■和△03中,
'ZAEO=NODC
-ZAOE=NOCD,
OC=OA
:./\AO^^\OCD(AAS),
:.cAoii,沖心4r而盧=7?了=5
...點c的坐標為:(-石,1).
故答案為:(-退,1).
【點睛】
本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理.注意準確作出輔助線、證得
△10匡△笫9是解此題的關鍵.
4、I
【解析】
【分析】
根據(jù)療=9',轉(zhuǎn)化為底數(shù)為3的分數(shù)指數(shù)累,求得x的值.
【詳解】
解:?.?掙=9',
3
35=32X'
解得,x=93,
O
故答案為:I.
【點睛】
本題考查分數(shù)指數(shù)累,解答本題的關鍵是明確分數(shù)指數(shù)基的含義.
5、ZEABUnZBAE
【解析】
【分析】
根據(jù)內(nèi)錯角的意義,結合具體的圖形進行判斷即可.
【詳解】
解:由內(nèi)錯角的意義可得,與是內(nèi)錯角,
故答案為:NEAB.
【點睛】
本題考查內(nèi)錯角,掌握內(nèi)錯角的意義是正確解答的前提.
三、解答題
一一2
1>(1)y=3xT;(2)(0,5),(0,-1(0,yJ~Td~^),(0,—).
/八13\5T3610
(3)y3=-X^y3=T^--
【解析】
【分析】
(1)把〃坐標代入y=x+l求出〃的值,確定出〃坐標,把6與〃坐標代入了=桁+。中求出力與人
的值,確定出直線劭解析式;
(2)如圖所示,設一(0,P)分三種情況考慮:當BD=PD;當BD=BP時;當BP=DP對,分別求出
P的值,確定出所求即可;
(3)先求出四邊形4??诘拿娣e,再分情況討論即可求解.
【詳解】
解:(1)把〃坐標(1,n)代入y=x+l中得:n=2,即〃(1,2),
把6(0,T)與〃(1,2)代入尸左x+8中得:{+=[?
解得:{二
...直線劭解析式為y=3x-l,
即力函數(shù)表達式為尸3x-l;
(2)如圖所示,設尸(0,p)分三種情況考慮:
當BD=PD時,可得(0-1)2+(-14)2=(0-1)2+(0母)z,
解得:。=5或p=-l(舍去),此時4(0,5);
當BD=BP時,可得(0T)2+(T母)2=(p+1))
解得:p=-1±-/10>
此時2(0,-i+V7^),P;<(O,-i-V7^);
當BP=DP時,可得(p+1)2=(0-1)2+2,
22
解得:p=—,即吊(0,—)?
一一——2
綜上,P的坐標為(0,5),(01(0,T),(01—).
(3)對于直線y=x+l,令y=0,得到x=T,即£(T,0);令x=0,得到y(tǒng)=l,
:.A(0,1)
對于直線y=3x-l,令y=0,得到x=g,即C(g,0),
則S四城AOCD=SADEC-SAAEO=\X-X2-X1X1=^
2326
?.?一次函數(shù)%="+〃的圖像經(jīng)過點〃且將四邊形405的面積分成1:2.
①設一次函數(shù)%=加%+〃的圖像與y軸交于。點,
15
SAADQ:--S四邊賬AOCD=-^
3I;
.1、,75
2118
'-AQi=-^
:.Q,(0,1)
5(2=+
把。(1,2)、Q,(0,9代入方=如+〃得5
9I=]
'_13
解得]一J
I二一9
._13,5
②設一次函數(shù)y.^mx+n的圖像與x軸交于。?點,
15
SACDQ^—Sm^AOCD=—
313
O
2=+
把〃(1,2)、Q(£0)代入方=勿栗+〃得,
1O+
°=78
36
解得7}
10
~13
,_3610
?,加二萬-不;
此題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,坐標與圖形性質(zhì),等腰
三角形的性質(zhì),利用了分類討論的思想,熟練掌握一次函數(shù)性質(zhì)是解本題的關鍵.
2、(1)①1;②描點見解析;③連線見解析
⑵①X;②X;③J
(3)當x>-l時,y隨x的增大而減小
【解析】
【分析】
(1)①將尸0代入即得加的值;②描出(0,1)即可;③把描出的點用平滑的曲線順次連接即可;
(2)根據(jù)圖像數(shù)形結合即可判斷.
(3)根據(jù)圖像再寫一條符合反比例函數(shù)特點的性質(zhì)即可.
(1)
①解:將x=0代入解析式中解得m=1;
②描點如圖所示③補充圖像如圖所示:
(2)
根據(jù)函數(shù)圖像可得:
①每一個分支上的函數(shù)值y隨X的增大而減小,故①錯誤,應為X;
②圖像關于(-1,0)對稱,故②錯誤,應為X;
③產(chǎn)7時?,一)無意義,函數(shù)圖像與直線尸T沒有交點,應為
X+1
(3)
當x>-l時,y隨x的增大而減小.
【點睛】
?本題考查函數(shù)的圖形及性質(zhì),解題的關鍵是熟練掌握研究函數(shù)的方法用列表、描點、連線作出圖像,
,再數(shù)形結合研究函數(shù)性質(zhì).
?3、(1)①見解析;@2ZCAE+ZADE=9Q°,理由見解析
鄲(2)3或
C
【解析】
【分析】
(1)①由旋轉(zhuǎn)的性質(zhì)得EC=BC,DC=AC,ZECB=ZDCA,根據(jù)相似的判定定理即可得證;
②由旋轉(zhuǎn)和相似三角形的性質(zhì)得==由NACB=90。得NC48+N8=90。,故
ZCAE+ZADC=ZCAE+ZCDE+ZADE=90°,代換即可得出結果;
(2)設BE=x,作于"射線應交線段〃1于點E則NCH4=4CF=90。,由旋轉(zhuǎn)可證
ABCEs^ACD,由相似三角形的性質(zhì)得NB5C=/D4C,"=絲=:即AO=2X,由此可證
ADAC2
AlJAC1
AAHCs^BCF,故=求得=分情況討論:①當線段應1交然于Q時、當射
BCBF2
線9交4C于少時,根據(jù)相似比求出X的值,再根據(jù)勾股定理即可求出6r的長.
(1)
①:將AABC繞點C旋轉(zhuǎn)得到ADEC,
:.EC=BC,DC=AC,ZECB=ADCA,
,4ECB=ZDCA,
DCAC
:./\BCEs/\AC£);
②2NC4E+NAZ汨=90。,理由如下:
???將△然(?繞點C旋轉(zhuǎn)得到△OEC,
JZCAE=ZCDEf
■:ABCESAACD,CE=CB,CD=CA,
:.ZB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 羊只飼養(yǎng)與疫病防控策略考核試卷
- 建筑物節(jié)能環(huán)保技術考核試卷
- 租賃合同的設計與租賃結構優(yōu)化考核試卷
- 航運物流與自然災害應對考核試卷
- 糧油市場新消費趨勢與產(chǎn)品創(chuàng)新考核試卷
- 珠寶首飾工藝技術創(chuàng)新與發(fā)展考核試卷
- 機器人運動控制與平衡調(diào)節(jié)考核試卷
- 航班乘客安全須知考核試卷
- 能效對標與節(jié)能技術改進考核試卷
- 生態(tài)環(huán)境保護法律咨詢考核試卷
- GA/T 751-2024公安視頻圖像屏幕顯示信息疊加規(guī)范
- 漢語方言與地方文化認同的關系研究論文
- 2024年全國統(tǒng)一高考英語試卷(新課標Ⅰ卷)含答案
- 2023學生食堂管理制度
- GB/T 7134-2008澆鑄型工業(yè)有機玻璃板材
- 工程竣工驗收報告及五方驗收表
- 部編版語文六年級下冊第四單元 復習課件
- 常用試敏藥品操作規(guī)程表
- 022旋翼干式塑料表殼水表
- 特殊旅客的航空服務文獻綜述
- 實驗模式動物斑馬魚左正宏
評論
0/150
提交評論