![2024屆新疆烏魯木齊市天山區(qū)兵團第二中學高三下學期大聯(lián)考(一)數(shù)學試題_第1頁](http://file4.renrendoc.com/view11/M00/3E/2E/wKhkGWWN3YyAeAvpAAIAhsgSumk403.jpg)
![2024屆新疆烏魯木齊市天山區(qū)兵團第二中學高三下學期大聯(lián)考(一)數(shù)學試題_第2頁](http://file4.renrendoc.com/view11/M00/3E/2E/wKhkGWWN3YyAeAvpAAIAhsgSumk4032.jpg)
![2024屆新疆烏魯木齊市天山區(qū)兵團第二中學高三下學期大聯(lián)考(一)數(shù)學試題_第3頁](http://file4.renrendoc.com/view11/M00/3E/2E/wKhkGWWN3YyAeAvpAAIAhsgSumk4033.jpg)
![2024屆新疆烏魯木齊市天山區(qū)兵團第二中學高三下學期大聯(lián)考(一)數(shù)學試題_第4頁](http://file4.renrendoc.com/view11/M00/3E/2E/wKhkGWWN3YyAeAvpAAIAhsgSumk4034.jpg)
![2024屆新疆烏魯木齊市天山區(qū)兵團第二中學高三下學期大聯(lián)考(一)數(shù)學試題_第5頁](http://file4.renrendoc.com/view11/M00/3E/2E/wKhkGWWN3YyAeAvpAAIAhsgSumk4035.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆新疆烏魯木齊市天山區(qū)兵團第二中學高三下學期大聯(lián)考(一)數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)滿足,當時,,則()A.或 B.或C.或 D.或2.已知復數(shù)滿足(其中為的共軛復數(shù)),則的值為()A.1 B.2 C. D.3.已知,則下列不等式正確的是()A. B.C. D.4.的展開式中的系數(shù)是()A.160 B.240 C.280 D.3205.已知向量,,則與共線的單位向量為()A. B.C.或 D.或6.已知函數(shù),若,則下列不等關系正確的是()A. B.C. D.7.函數(shù)的部分圖像如圖所示,若,點的坐標為,若將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,則的最小值為()A. B. C. D.8.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.29.已知函數(shù),則()A.2 B.3 C.4 D.510.已知復數(shù),則的虛部為()A.-1 B. C.1 D.11.函數(shù)在的圖像大致為A. B. C. D.12.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,則的值為______.14.設平面向量與的夾角為,且,,則的取值范圍為______.15.已知橢圓Г:,F(xiàn)1、F2是橢圓Г的左、右焦點,A為橢圓Г的上頂點,延長AF2交橢圓Г于點B,若為等腰三角形,則橢圓Г的離心率為___________.16.集合,,若是平面上正八邊形的頂點所構(gòu)成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.18.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點.(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.19.(12分)某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設不合格的產(chǎn)品均可進行返工修復為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回損失元和元.若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進行檢測,結(jié)果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.21.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關,合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關,質(zhì)量把關程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關,再由另外2位行家進行第二次質(zhì)量把關,若第二次質(zhì)量把關這2位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關這2位行家中有1位或2位認為質(zhì)量不過關,則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關,則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關中一件手工藝品被1位行家認為質(zhì)量不過關的概率為,且各手工藝品質(zhì)量是否過關相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.22.(10分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)設直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
簡單判斷可知函數(shù)關于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結(jié)合對稱性,可得結(jié)果.【題目詳解】由,可知函數(shù)關于對稱當時,,可知在單調(diào)遞增則又函數(shù)關于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【題目點撥】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.2、D【解題分析】
按照復數(shù)的運算法則先求出,再寫出,進而求出.【題目詳解】,,.故選:D【題目點撥】本題考查復數(shù)的四則運算、共軛復數(shù)及復數(shù)的模,考查基本運算能力,屬于基礎題.3、D【解題分析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【題目詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【題目點撥】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.4、C【解題分析】
首先把看作為一個整體,進而利用二項展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【題目詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【題目點撥】本題考查二項展開式指定項的系數(shù),掌握二項展開式的通項是解題的關鍵,屬于基礎題.5、D【解題分析】
根據(jù)題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【題目詳解】因為,,則,所以,設與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【題目點撥】本題考查向量的坐標運算以及共線定理和單位向量的定義.6、B【解題分析】
利用函數(shù)的單調(diào)性得到的大小關系,再利用不等式的性質(zhì),即可得答案.【題目詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【題目點撥】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.7、B【解題分析】
根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關于軸對稱,求得的最小值.【題目詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【題目點撥】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關鍵,要求熟練掌握函數(shù)圖象之間的變換關系,屬于簡單題目.8、B【解題分析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【題目詳解】解:,一條漸近線,故選:B【題目點撥】利用的關系求雙曲線的離心率,是基礎題.9、A【解題分析】
根據(jù)分段函數(shù)直接計算得到答案.【題目詳解】因為所以.故選:.【題目點撥】本題考查了分段函數(shù)計算,意在考查學生的計算能力.10、A【解題分析】
分子分母同乘分母的共軛復數(shù)即可.【題目詳解】,故的虛部為.故選:A.【題目點撥】本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.11、B【解題分析】
由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【題目詳解】設,則,所以是奇函數(shù),圖象關于原點成中心對稱,排除選項C.又排除選項D;,排除選項A,故選B.【題目點撥】本題通過判斷函數(shù)的奇偶性,縮小考察范圍,通過計算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎知識、基本計算能力的考查.12、B【解題分析】
分別判斷充分性和必要性得到答案.【題目詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【題目點撥】本題考查了充分必要條件,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先求,再根據(jù)的范圍求出即可.【題目詳解】由題可知,故.故答案為:.【題目點撥】本題考查分段函數(shù)函數(shù)值的求解,涉及對數(shù)的運算,屬基礎題.14、【解題分析】
根據(jù)已知條件計算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進而可得出的取值范圍.【題目詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【題目點撥】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.15、【解題分析】
由題意可得等腰三角形的兩條相等的邊,設,由題可得的長,在三角形中,三角形中由余弦定理可得的值相等,可得的關系,從而求出橢圓的離心率【題目詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結(jié)合余弦定理,易得在中,,所以,即e==,故答案為:.【題目點撥】此題考查橢圓的定義及余弦定理的簡單應用,屬于中檔題.16、②③【解題分析】
根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【題目詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構(gòu)成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【題目點撥】本題考查了根據(jù)集合的交集求參數(shù),意在考查學生的計算能力和轉(zhuǎn)化能力,利用對稱性是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)先分別表示出,然后根據(jù)求解出的值,則的標準方程可求;(2)設出直線的方程并聯(lián)立拋物線方程得到韋達定理形式,然后根據(jù)距離公式表示出并代入韋達定理形式,由此判斷出為定值時的坐標.【題目詳解】(1)由題意可得,焦點,,則,,∴解得.拋物線的標準方程為(2)設,設點,,顯然直線的斜率不為0.設直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時,點的坐標為【題目點撥】本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對應的定值問題,聯(lián)立直線方程借助韋達定理形式是常用方法;(2)直線與圓錐曲線的問題中,直線方程的設法有時能很大程度上起到簡化運算的作用。18、(1)見解析(2)見解析【解題分析】
(1)連結(jié)AC交BD于點O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【題目詳解】證明:(1)連結(jié)AC交BD于點O,連結(jié)OE因為四邊形ABCD為平行四邊形∴O為AC中點,又E為PC中點,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD為正三角形,E為PC中點所以PC⊥DE因為平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【題目點撥】本題主要考查空間位置關系的證明,線面平行一般轉(zhuǎn)化為線線平行來證明,直線與直線垂直通常利用線面垂直來進行證明,側(cè)重考查邏輯推理的核心素養(yǎng).19、(1)(2)①生產(chǎn)線上挽回的損失較多.②見解析【解題分析】
(1)由題意得到關于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數(shù)學期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.【題目詳解】(1)設從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合格率分別為和,即不合格率分別為和.①設從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線上挽回損失的平均數(shù)分別為:,所以生產(chǎn)線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計總體,則有,,所以的分布列為所以(元)故估算估算該廠產(chǎn)量件時利潤的期望值為(元)【題目點撥】本題主要考查概率公式的應用,二項分布的性質(zhì)與方差的求解,離散型隨機變量及其分布列的求解等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.20、(1);(2)見解析【解題分析】
(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年CDMA第三代蜂窩移動通信系統(tǒng)合作協(xié)議書
- 2025年光纖用GECL4合作協(xié)議書
- 2025年中學教師勞動合同樣本(2篇)
- 2025年九年級班主任個人年終教學工作總結(jié)范文(二篇)
- 2025年個人投資公司協(xié)議標準范文(2篇)
- 2025年二手摩托車轉(zhuǎn)讓協(xié)議標準范文(2篇)
- 2025年個人終止合同申請(五篇)
- 2025年二次消防改造工程合同協(xié)議(2篇)
- 2025年個人房屋借款合同標準版本(三篇)
- 2025年五年級英語教師工作總結(jié)樣本(四篇)
- 基金應知應會專項考試題庫(證券類190題)附有答案
- 遼寧省沈陽市第七中學2023-2024學年七年級下學期期末數(shù)學試題
- 2024年湖南工業(yè)職業(yè)技術(shù)學院單招職業(yè)技能測試題庫附答案
- 快速入門穿越機-讓你迅速懂穿越機
- 水利安全生產(chǎn)風險防控“六項機制”右江模式經(jīng)驗分享
- 2024年四川省成都市高新區(qū)中考數(shù)學二診試卷
- 幼兒園衛(wèi)生保健開學培訓
- 食材配送服務售后服務方案
- 礦井主要災害事故防治應急避災知識培訓課件
- 不老莓行業(yè)分析
- STARCCM基礎培訓教程
評論
0/150
提交評論