




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
海南華僑中學(xué)2022-2023學(xué)年第一學(xué)期高一年級期末考試數(shù)學(xué)科注意事項:1.答卷前,考生務(wù)必將自己的姓名?考號等填寫在答題卡指定位置上.2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑.回3.答非選擇題時,將答案寫在答題卡上.一?單項選擇題(本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】由已知可求出SKIPIF1<0,進(jìn)而即可得出SKIPIF1<0的值.【詳解】因為SKIPIF1<0,且SKIPIF1<0,所以,SKIPIF1<0.所以,SKIPIF1<0.故選:A.2.已知SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】【分析】解不等式,根據(jù)解的范圍與SKIPIF1<0的范圍的大小關(guān)系,即可得出答案.【詳解】解SKIPIF1<0可得,SKIPIF1<0,顯然該范圍小于SKIPIF1<0的范圍.所以“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:A.3.已知集合SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】求得集合SKIPIF1<0,結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合SKIPIF1<0,所以集合SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:D4.已知偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,則SKIPIF1<0的解集是()A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】由SKIPIF1<0及函數(shù)單調(diào)性即可得到答案.【詳解】偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0
故SKIPIF1<0的解集是SKIPIF1<0或SKIPIF1<0.故選:B5.已知函數(shù)SKIPIF1<0的零點分別為a,b,c,則a,b,c的大小順序為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】首先可求出SKIPIF1<0,再由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,將其轉(zhuǎn)化為SKIPIF1<0、SKIPIF1<0與SKIPIF1<0的交點,數(shù)形結(jié)合即可判斷.【詳解】解:由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0.在同一平面直角坐標(biāo)系中畫出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的圖象,由圖象知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B【點睛】本題考查函數(shù)的零點,函數(shù)方程思想,對數(shù)函數(shù)、指數(shù)函數(shù)的圖象的應(yīng)用,屬于中檔題.6.若SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】由已知可推出SKIPIF1<0,進(jìn)而可得出SKIPIF1<0.然后根據(jù)SKIPIF1<0的范圍,開方即可求出.【詳解】因為,SKIPIF1<0SKIPIF1<0,所以,SKIPIF1<0.所以,SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:A.7.王之渙《登鸛雀樓》:白日依山盡,黃河入海流,欲窮千里目,更上一層樓.詩句不僅刻畫了祖國的壯麗河山,而且揭示了“只有站得高,才能看得遠(yuǎn)”的哲理,因此成為千古名句.我們從數(shù)學(xué)角度來思考:欲窮千里目,需上幾層樓?把地球看作球體,地球半徑SKIPIF1<0,如圖,設(shè)SKIPIF1<0為地球球心,人的初始位置為點SKIPIF1<0,點SKIPIF1<0是人登高后的位置(人的高度忽略不計),按每層樓高SKIPIF1<0計算,“欲窮千里目”即弧SKIPIF1<0的長度為SKIPIF1<0,則需要登上樓的層數(shù)約為()(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)A.5800 B.6000 C.6600 D.70000【答案】C【解析】【分析】設(shè)SKIPIF1<0.由已知可推得,SKIPIF1<0,進(jìn)而在SKIPIF1<0中,得出SKIPIF1<0,則有SKIPIF1<0,即可得出答案.【詳解】設(shè)SKIPIF1<0,弧SKIPIF1<0的長為SKIPIF1<0.由題意可得,SKIPIF1<0.顯然,SKIPIF1<0,則在SKIPIF1<0中,有SKIPIF1<0,所以SKIPIF1<0.所以,SKIPIF1<0.所以,需要登上樓的層數(shù)約為SKIPIF1<0.故選:C.8.定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則方程SKIPIF1<0在SKIPIF1<0上所有根的和為()A.32 B.48 C.64 D.80【答案】C【解析】【分析】根據(jù)奇函數(shù)的性質(zhì)判斷出函數(shù)的周期,利用函數(shù)的對稱性、數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】因為SKIPIF1<0是奇函數(shù),所以由SKIPIF1<0,因此函數(shù)的周期為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,于是當(dāng)SKIPIF1<0時,SKIPIF1<0,該函數(shù)關(guān)于點SKIPIF1<0對稱,而函數(shù)SKIPIF1<0也關(guān)于該點對稱,在同一直角坐標(biāo)系內(nèi)圖象如下圖所示:由數(shù)形結(jié)合思想可知:這兩個函數(shù)圖象有8個交點,即共有四對關(guān)于SKIPIF1<0對稱的點,所以方程SKIPIF1<0在SKIPIF1<0上所有根的和為SKIPIF1<0,故選:C【點睛】關(guān)鍵點睛:方程根的問題轉(zhuǎn)化為兩個函數(shù)圖象交點問題是解題的關(guān)鍵.二?多項選擇題(本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.)9.下列命題中錯誤的是()A.命題“SKIPIF1<0”的否定是“SKIPIF1<0”B.若冪函數(shù)圖象經(jīng)過點SKIPIF1<0,則解析式為SKIPIF1<0C.若兩個角的終邊相同,則這兩個角相等D.滿足SKIPIF1<0的SKIPIF1<0的取值集合為SKIPIF1<0【答案】AC【解析】【分析】寫出命題否定,即可判斷A項;待定系數(shù)法設(shè)出冪函數(shù)的解析式,代入坐標(biāo),求解,即可判斷B項;取特殊值,即可說明C項;根據(jù)SKIPIF1<0的圖象,即可得出不等式在SKIPIF1<0上的解集,然后根據(jù)周期性,即可得出結(jié)果.【詳解】對于A項,根據(jù)全稱量詞命題的否定可知,命題“SKIPIF1<0”的否定是“SKIPIF1<0”,故A項錯誤;對于B項,設(shè)冪函數(shù)解析式為SKIPIF1<0.由已知可得,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故B項正確;對于C項,因為SKIPIF1<0,所以SKIPIF1<0和SKIPIF1<0終邊相同,顯然SKIPIF1<0,故C項錯誤;對于D項,作出SKIPIF1<0的圖象.由圖可知,在SKIPIF1<0上,滿足SKIPIF1<0的SKIPIF1<0的取值集合為SKIPIF1<0,根據(jù)正弦函數(shù)的周期性可知,滿足SKIPIF1<0的SKIPIF1<0的取值集合為SKIPIF1<0,故D項正確.故選:AC.10.下列不等式中成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【解析】【分析】根據(jù)函數(shù)的單調(diào)性,即可判斷A、B項;根據(jù)誘導(dǎo)公式將角化到同一單調(diào)區(qū)間,進(jìn)而根據(jù)函數(shù)的單調(diào)性,即可判斷C項;根據(jù)誘導(dǎo)公式化為同一三角函數(shù),進(jìn)而根據(jù)函數(shù)的單調(diào)性,即可判斷D項.【詳解】對于A項,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故A項錯誤;對于B項,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,故B項錯誤;對于C項,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,故C項正確;對于D項,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,故D項正確.故選:CD.11.已知直線SKIPIF1<0是函數(shù)SKIPIF1<0圖象的一條對稱軸,則()A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0是SKIPIF1<0圖象的一條對稱軸C.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減 D.當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得最小值【答案】AC【解析】【分析】根據(jù)SKIPIF1<0為圖象的對稱軸,求出SKIPIF1<0,從而得到SKIPIF1<0,得到A正確;整體法求解函數(shù)的對稱軸方程,判斷B選項;代入檢驗函數(shù)是否在SKIPIF1<0上單調(diào)遞減;代入SKIPIF1<0求出SKIPIF1<0,D錯誤.【詳解】因為直線SKIPIF1<0是函數(shù)SKIPIF1<0SKIPIF1<0圖象的一條對稱軸,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,是偶函數(shù),故A正確;令SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0圖象的對稱軸方程為SKIPIF1<0,而SKIPIF1<0不能滿足上式,故B錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,故C正確;顯然函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,故D錯誤.故選:AC.12.已知SKIPIF1<0,SKIPIF1<0.則下列選項中正確的有()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【解析】【分析】由已知可得SKIPIF1<0,SKIPIF1<0.根據(jù)不等式的性質(zhì),即可判斷A項;根據(jù)基本不等式及其等號成立的條件即可判斷B、C項;作差后,令SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì),得出函數(shù)的單調(diào)性.易知SKIPIF1<0,SKIPIF1<0,即可得出D項.【詳解】由已知可得,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.對于A項,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故A正確;對于B項,由基本不等式可知,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故B項正確;對于C項,因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.因為SKIPIF1<0,所以SKIPIF1<0,所以,SKIPIF1<0,故C項錯誤;對于D項,因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì)可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,所以有SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.所以,SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以有SKIPIF1<0,整理可得,SKIPIF1<0,故D項正確.故選:ABD.三?填空題:本題共4小題,每小題5分,共20分.13.已知角SKIPIF1<0的終邊過點SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0##0.6【解析】【分析】由已知可推得SKIPIF1<0,然后根據(jù)誘導(dǎo)公式化簡,即可得出答案.【詳解】由三角函數(shù)的定義可得,SKIPIF1<0.所以,SKIPIF1<0.故答案為:SKIPIF1<0.14.已知函數(shù)SKIPIF1<0,則SKIPIF1<0__________.【答案】7【解析】【分析】根據(jù)分段函數(shù)求出SKIPIF1<0,代入根據(jù)對數(shù)的運算性質(zhì)即可得出答案.【詳解】由已知可得,SKIPIF1<0,所以SKIPIF1<0.故答案為:7.15.已知SKIPIF1<0過定點P,且P點在直線SKIPIF1<0上,則SKIPIF1<0的最小值=______________.【答案】SKIPIF1<0##SKIPIF1<0【解析】【分析】先求出定點,代入直線方程,最后利用基本不等式求解.【詳解】SKIPIF1<0經(jīng)過定點SKIPIF1<0,代入直線得SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立故答案為:SKIPIF1<016.已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的最大值是____.【答案】4【解析】【分析】根據(jù)正弦型函數(shù)的單調(diào)性即可求解.【詳解】由函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,求得SKIPIF1<0,故SKIPIF1<0的最大值為SKIPIF1<0,故答案為:4四?解答題(本大題共6小題,共70分,解答應(yīng)寫出文字說明?證明過程或演算步驟.)17.已知集合SKIPIF1<0,SKIPIF1<0,全集SKIPIF1<0(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0;(2)若SKIPIF1<0,求實數(shù)SKIPIF1<0取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)代入SKIPIF1<0得到SKIPIF1<0,根據(jù)補(bǔ)集的運算求出SKIPIF1<0.然后解SKIPIF1<0可求出SKIPIF1<0,進(jìn)而根據(jù)交集的運算,即可得出結(jié)果;(2)顯然SKIPIF1<0成立.SKIPIF1<0時,解SKIPIF1<0即可得出實數(shù)SKIPIF1<0的取值范圍.【小問1詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.由SKIPIF1<0以及指數(shù)函數(shù)的單調(diào)性,可解得SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.【小問2詳解】當(dāng)SKIPIF1<0時,有SKIPIF1<0時,即SKIPIF1<0,此時滿足SKIPIF1<0;當(dāng)SKIPIF1<0時,由SKIPIF1<0得,SKIPIF1<0,解得SKIPIF1<0,綜上,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.18.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的對稱中心和單調(diào)增區(qū)間;(2)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的最小值和最大值.【答案】(1)對稱中心為SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0;(2)最小值為SKIPIF1<0,最大值0.【解析】【分析】(1)結(jié)合正弦函數(shù)的性質(zhì),整體代入即可求出函數(shù)的對稱中心以及單調(diào)遞增區(qū)間;(2)令SKIPIF1<0,由已知可得,SKIPIF1<0.根據(jù)SKIPIF1<0的單調(diào)性,即可得出函數(shù)的最值.【小問1詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的對稱中心為SKIPIF1<0.由SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)的單調(diào)增區(qū)間為SKIPIF1<0.【小問2詳解】令SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0,即SKIPIF1<0時,函數(shù)SKIPIF1<0有最大值為SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0,所以,當(dāng)SKIPIF1<0,即SKIPIF1<0時,函數(shù)SKIPIF1<0有最小值為SKIPIF1<0.所以,函數(shù)SKIPIF1<0的最大值為0,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0.19.已知函數(shù)SKIPIF1<0,且SKIPIF1<0為奇函數(shù).(1)求SKIPIF1<0的值;(2)判斷函數(shù)SKIPIF1<0的單調(diào)性并證明;(3)解不等式:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)減函數(shù),證明見解析(3)SKIPIF1<0【解析】【分析】(1)由若SKIPIF1<0在區(qū)間DSKIPIF1<0上為奇函數(shù),則SKIPIF1<0可得a的值,再由奇函數(shù)的定義檢驗即可.(2)由函數(shù)單調(diào)性的性質(zhì)判斷其單調(diào)性,再由單調(diào)性的定義法證明(任取、作差、變形、斷號、寫結(jié)論)即可.(3)由函數(shù)SKIPIF1<0為奇函數(shù)處理原不等式得SKIPIF1<0,再由函數(shù)SKIPIF1<0在R上單調(diào)遞減,比較兩個括號中式子的大小,解不等式即可.【小問1詳解】∵函數(shù)的定義域為R,函數(shù)SKIPIF1<0為奇函數(shù),∴SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0檢驗,當(dāng)SKIPIF1<0時,SKIPIF1<0,定義域為R,對于任意實數(shù)SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0所以當(dāng)SKIPIF1<0時,SKIPIF1<0為奇函數(shù).【小問2詳解】由(1)知SKIPIF1<0,SKIPIF1<0在R上為單調(diào)遞減函數(shù).證明:設(shè)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,即函數(shù)SKIPIF1<0在定義域R上單調(diào)遞減.【小問3詳解】∵SKIPIF1<0在R上為奇函數(shù),SKIPIF1<0,∴SKIPIF1<0,又∵函數(shù)SKIPIF1<0在R上單調(diào)遞減,∴SKIPIF1<0,解得:SKIPIF1<0,∴不等式的解集為SKIPIF1<020.已知SKIPIF1<0,SKIPIF1<0(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)令SKIPIF1<0,求此函數(shù)的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)應(yīng)用同角三角函數(shù)關(guān)系及定義域化簡SKIPIF1<0,結(jié)合函數(shù)值及正切函數(shù)值確定角的大小即可;(2)令SKIPIF1<0,結(jié)合二次函數(shù)性質(zhì)求函數(shù)的最大值.【小問1詳解】SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0.【小問2詳解】由(1)知:SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,故,當(dāng)SKIPIF1<0時SKIPIF1<0.21.學(xué)校鼓勵學(xué)生課余時間積極參加體育鍛煉,每天能用于鍛煉的課余時間有60分鐘,現(xiàn)需要制定一個課余鍛煉考核評分制度,建立一個每天得分SKIPIF1<0與當(dāng)天鍛煉時間SKIPIF1<0(單位:分)的函數(shù)關(guān)系.要求及圖示如下:(i)函數(shù)是區(qū)間SKIPIF1<0上的增函數(shù);(ii)每天運動時間為0分鐘時,當(dāng)天得分為0分;(iii)每天運動時間為20分鐘時,當(dāng)天得分為3分;(iiii)每天最多得分不超過6分.現(xiàn)有以下三個函數(shù)模型供選擇:①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0.(1)請你根據(jù)條件及圖像從中選擇一個合適的函數(shù)模型,并求出函數(shù)的解析式;(2)求每天得分不少于SKIPIF1<0分,至少需要鍛煉多少分鐘.(注:SKIPIF1<0,結(jié)果保留整數(shù)).【答案】(1)模型③,SKIPIF1<0(2)至少需要鍛煉37分鐘.【解析】【分析】(1)根據(jù)已知圖象的增長特征,結(jié)合模型中函數(shù)所過的點,以及函數(shù)的增長速度,即可確定模型,將對應(yīng)的點代入,求得參數(shù),可得解析式,并驗證,即可求解;(2)由(1)得SKIPIF1<0,令SKIPIF1<0,求出SKIPIF1<0的范圍,即可得出答案.【小問1詳解】解:對于模型①,SKIPIF1<0,當(dāng)滿足同時過點SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,不合題意;由圖可知,該函數(shù)的增長速度較慢,對于模型②SKIPIF1<0,是指數(shù)型的函數(shù),其增長是爆炸型增長,故②不合適;對于模型③SKIPIF1<0,對數(shù)型的函數(shù)增長速度較慢,符合題意,故選項模型③,此時,所求函數(shù)過點SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故所求函數(shù)為SKIPIF1<0,經(jīng)檢驗,當(dāng)SKIPIF1<0時,SKIPIF1<0,符合題意綜上所述,函數(shù)的解析式為SKIPIF1<0.【小問2詳解】解:由(1)得SKIPIF1<0,因為每天得分不少于SKIPIF1<0分,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以每天得分不少于4.5分,至少需要鍛煉37分鐘.22.已知函數(shù)SKIPIF1<0SKIPIF1<0在區(qū)間SKIPIF1<0上有最大值2和最小值1.(1)求SKIPIF1<0的值;(2)不等式SKIPIF1<0在SKIPIF1<0上恒成立,求實數(shù)SKIPIF1<0的取值范圍;(3)若SKIPIF1<0且方程SKIPIF1<0有三個不同的實數(shù)解,求實數(shù)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 做門面招牌合同范本
- 公司鋼材購銷合同范本
- 加裝電梯合伙合同范本
- 出租農(nóng)場果園合同范本
- 與銀行簽訂合同范本
- 分傭合同范例
- 個人軟件項目合同范本
- 個人演出雇用合同范本
- 加盟合同范本化妝
- 內(nèi)墻無機(jī)涂料合同范本
- 少兒美術(shù)教育知識講座
- 外科學(xué)教學(xué)課件:頸、腰椎退行性疾病
- 2023-2024屆高考語文復(fù)習(xí)小說訓(xùn)練(含答案)-孫犁《風(fēng)云初記》
- 天耀中華合唱簡譜大劇院版
- 中醫(yī)培訓(xùn)課件:《拔罐技術(shù)》
- 取節(jié)育環(huán)之后的護(hù)理
- 2023年12月東莞市樟木頭鎮(zhèn)下屬事業(yè)單位2024年公開招考4名特聘工程師筆試歷年高頻考題(難、易錯點薈萃)答案帶詳解附后
- 美羅華(利妥昔單抗)課件
- 河南文旅行業(yè)分析
- 民法典之侵權(quán)責(zé)任編培訓(xùn)課件
- 研究生矩陣論試題及答案
評論
0/150
提交評論