2024屆安徽省合肥市廬江縣高三(5月)第二次質量檢查數(shù)學試題_第1頁
2024屆安徽省合肥市廬江縣高三(5月)第二次質量檢查數(shù)學試題_第2頁
2024屆安徽省合肥市廬江縣高三(5月)第二次質量檢查數(shù)學試題_第3頁
2024屆安徽省合肥市廬江縣高三(5月)第二次質量檢查數(shù)學試題_第4頁
2024屆安徽省合肥市廬江縣高三(5月)第二次質量檢查數(shù)學試題_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽省合肥市廬江縣高三(5月)第二次質量檢查數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知冪函數(shù)的圖象過點,且,,,則,,的大小關系為()A. B. C. D.2.設是虛數(shù)單位,則()A. B. C. D.3.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.4.為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學運算最強5.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.6.命題:的否定為A. B.C. D.7.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④8.已知,,分別是三個內角,,的對邊,,則()A. B. C. D.9.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則10.設全集,集合,則=()A. B. C. D.11.《周易》歷來被人們視作儒家群經之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數(shù)的思想方法.我們用近代術語解釋為:把陽爻“-”當作數(shù)字“1”,把陰爻“--”當作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號表示的二進制數(shù)表示的十進制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數(shù)是()A.18 B.17 C.16 D.1512.已知隨機變量服從正態(tài)分布,,()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則的值為______.14.在等差數(shù)列()中,若,,則的值是______.15.在平面直角坐標系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.16.函數(shù)過定點________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.18.(12分)已知函數(shù),它的導函數(shù)為.(1)當時,求的零點;(2)當時,證明:.19.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)某生物硏究小組準備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據(jù)統(tǒng)計該地區(qū)蜻蜓有兩種,且這兩種的個體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長為隨機變量,若用正態(tài)分布來近似描述的分布,請你根據(jù)(Ⅰ)中的結果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機捕捉3只,記這3只中翼長在區(qū)間的個數(shù)為,求的分布列及數(shù)學期望(分布列寫出計算表達式即可).注:若,則,,.21.(12分)已知,.(1)求函數(shù)的單調遞增區(qū)間;(2)的三個內角、、所對邊分別為、、,若且,求面積的取值范圍.22.(10分)已知函數(shù).(Ⅰ)求函數(shù)的單調區(qū)間;(Ⅱ)當時,求函數(shù)在上最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質,以及對數(shù)函數(shù)的單調性即可判斷.【題目詳解】依題意,得,故,故,,,則.故選:A.【題目點撥】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性比較大小,考查推理論證能力,屬基礎題.2、A【解題分析】

利用復數(shù)的乘法運算可求得結果.【題目詳解】由復數(shù)的乘法法則得.故選:A.【題目點撥】本題考查復數(shù)的乘法運算,考查計算能力,屬于基礎題.3、D【解題分析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).4、D【解題分析】

根據(jù)所給的雷達圖逐個選項分析即可.【題目詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【題目點撥】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.5、C【解題分析】

作,;,由題意,由二倍角公式即得解.【題目詳解】由題意,,準線:,作,;,設,故,,.故選:C【題目點撥】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.6、C【解題分析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結論否定,可知命題的否定為,故選C.7、D【解題分析】

計算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯誤,得到答案.【題目詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數(shù)關于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【題目點撥】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質,意在考查學生對于三角函數(shù)知識和圖像的綜合應用.8、C【解題分析】

原式由正弦定理化簡得,由于,可求的值.【題目詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【題目點撥】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.9、B【解題分析】

根據(jù)空間中線線、線面位置關系,逐項判斷即可得出結果.【題目詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【題目點撥】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于常考題型.10、A【解題分析】

先求得全集包含的元素,由此求得集合的補集.【題目詳解】由解得,故,所以,故選A.【題目點撥】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.11、B【解題分析】

由題意可知“屯”卦符號“”表示二進制數(shù)字010001,將其轉化為十進制數(shù)即可.【題目詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數(shù)字010001,轉化為十進制數(shù)的計算為1×20+1×24=1.故選:B.【題目點撥】本題主要考查數(shù)制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.12、B【解題分析】

利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結果.【題目詳解】,所以,.故選:B.【題目點撥】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

先求,再根據(jù)的范圍求出即可.【題目詳解】由題可知,故.故答案為:.【題目點撥】本題考查分段函數(shù)函數(shù)值的求解,涉及對數(shù)的運算,屬基礎題.14、-15【解題分析】

是等差數(shù)列,則有,可得的值,再由可得,計算即得.【題目詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【題目點撥】本題考查等差數(shù)列的性質,也可以由已知條件求出和公差,再計算.15、【解題分析】

設圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉化成兩個新圓有公共點求參數(shù)范圍.【題目詳解】設圓C1上存在點P(x0,y0)滿足題意,點P關于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【題目點撥】此題考查圓與圓的位置關系,其中涉及點關于直線對稱點問題,兩個圓有公共點的判定方式.16、【解題分析】

令,,與參數(shù)無關,即可得到定點.【題目詳解】由指數(shù)函數(shù)的性質,可得,函數(shù)值與參數(shù)無關,所有過定點.故答案為:【題目點撥】此題考查函數(shù)的定點問題,關鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關,熟記常見函數(shù)的定點可以節(jié)省解題時間.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)通過討論的范圍,得到關于的不等式組,解出取并集即可.(2)去絕對值將函數(shù)寫成分段函數(shù)形式討論分段函數(shù)的單調性由恒成立求得結果.【題目詳解】解:(1)當時,,即或或解之得或,即不等式的解集為.(2)由題意得:當時為減函數(shù),顯然恒成立.當時,為增函數(shù),,當時,為減函數(shù),綜上所述:使恒成立的的取值范圍為.【題目點撥】本題考查了解絕對值不等式問題,考查不等式恒成立問題中求解參數(shù)問題,考查分類討論思想,轉化思想,屬于中檔題.18、(1)見解析;(2)證明見解析.【解題分析】

當時,求函數(shù)的導數(shù),判斷導函數(shù)的單調性,計算即為導函數(shù)的零點;

當時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【題目詳解】(1)的定義域為當時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調遞增,所以,即,在上單調遞增;所以,即,故.【題目點撥】本題主要考查導數(shù)法研究函數(shù)的單調性,單調性,零點的求法.注意分類討論和構造新函數(shù)求函數(shù)的最值的應用.19、(1)見解析,(2)【解題分析】

(1)根據(jù)等差中項的定義得,然后構造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結果,分組求和即可【題目詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.【題目點撥】考查等差中項的定義和分組求和的方法;中檔題.20、(Ⅰ);(Ⅱ),;(Ⅲ)詳見解析.【解題分析】

(Ⅰ)由題知這只蜻蜓是種還是種的可能性是相等的,所以,代入數(shù)值運算即可;(Ⅱ)可判斷均值應為,再結合(1)和題干備注信息可得,進而求解;(Ⅲ)求得,該分布符合二項分布,故,列出分布列,計算出對應概率,結合即可求解;【題目詳解】(Ⅰ)記這只蜻蜓的翼長為.因為種蜻蜓和種蜻蜓的個體數(shù)量大致相等,所以這只蜻蜓是種還是種的可能性是相等的.所以.(Ⅱ)由于兩種蜻蜓的個體數(shù)量相等,的方差也相等,根據(jù)正態(tài)曲線的對稱性,可知由(Ⅰ)可知,得.(Ⅲ)設蜻蜓的翼長為,則.由題有,所以.因此的分布列為.【題目點撥】本題考查正態(tài)分布基本量的求解,二項分布求解離散型隨機變量分布列和期望,屬于中檔題21、(1);(2).【解題分析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調遞增區(qū)間;(2)由求得,利用余弦定理結合基本不等式求出的取值范圍,再結合三角形的面積公式可求得面積的取值范圍.【題目詳解】(1),解不等式,解得.因此,函數(shù)的單調遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【題目點撥】本題考查正弦型函數(shù)單調區(qū)間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應用,考查計算能力,屬于中等題.22、(Ⅰ)見解析;(Ⅱ)當時,函數(shù)的最小值是;當時,函數(shù)的最小值是【解題分析】

(1)求出導函數(shù),并且解出它的零點x=,再分區(qū)間討論導數(shù)的正負,即可得到函數(shù)f(x)的單調區(qū)間;

(2)分三種情況加以討論,結合函數(shù)的單調性與函數(shù)值的大小比較,即可得到當0<a<ln2時,函數(shù)f(x)的最小值是-a;當a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【題目詳解】函數(shù)的定義域

為.

因為,令,可得;

當時,;當時,,綜上所述:可知函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論