2023-2024學年北京海淀區(qū)九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
2023-2024學年北京海淀區(qū)九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
2023-2024學年北京海淀區(qū)九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
2023-2024學年北京海淀區(qū)九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
2023-2024學年北京海淀區(qū)九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年北京海淀區(qū)九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,已知直線a∥b∥c,直線m交直線a,b,c于點A,B,C,直線n交直線a,b,c于點D,E,F(xiàn),若,則=()A. B. C. D.12.在下列圖形中,是中心對稱圖形的是()A. B.C. D.3.反比例函數(shù)y=的圖象經(jīng)過點(3,﹣2),下列各點在圖象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)4.如圖,△ODC是由△OAB繞點O順時針旋轉(zhuǎn)30°后得到的圖形,若點D恰好落在AB上,則∠A的度數(shù)為()A.70° B.75° C.60° D.65°5.某射擊運動員在訓練中射擊了10次,成績?nèi)鐖D所示:下列結(jié)論不正確的是()A.眾數(shù)是8 B.中位數(shù)是8 C.平均數(shù)是8.2 D.方差是1.26.如圖,在⊙O中,AB為直徑,圓周角∠ACD=20°,則∠BAD等于()A.20° B.40° C.70° D.80°7.如圖所示的工件,其俯視圖是()A. B. C. D.8.如圖,在一幅長80cm,寬50cm的矩形樹葉畫四周鑲一條金色的紙邊,制成一幅矩形掛圖,若要使整個掛圖的面積是5400cm2,設金色紙邊的寬為xcm,則滿足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=54009.二次函數(shù)y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-4,0),對稱軸為直線x=-1,下列結(jié)論:①abc>0;②1a-b=0;③一元二次方程ax1+bx+c=0的解是x1=-4,x1=1;④當y>0時,-4<x<1.其中正確的結(jié)論有(

)A.4個 B.3個 C.1個 D.1個10.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.2二、填空題(每小題3分,共24分)11.若關于x的方程kx2+2x﹣1=0有實數(shù)根,則k的取值范圍是_____.12.一個圓錐的側(cè)面展開圖是半徑為8的半圓,則該圓錐的全面積是______________.13.如圖,在△ABC中,點A1,B1,C1分別是BC,AC,AB的中點,A2,B2,C2分別是B1C1,A1C1,A1B1的中點……依此類推,若△ABC的面積為1,則△AnBnCn的面積為__________.14.已知⊙O的內(nèi)接正六邊形的邊心距為1.則該圓的內(nèi)接正三角形的面積為_____.15.已知二次函數(shù)中,函數(shù)與自變量的部分對應值如下表:…-2-1012……105212…則當時,的取值范圍是______.16.已知關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是________.17.分母有理化:=_____.18.如圖,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,則cos∠AOB的值等于___________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,△ABC各頂點的坐標分別為:A(-2,-2),B(-4,-1),C(-4,-4).(1)畫出與△ABC關于點P(0,-2)成中心對稱的△A1B1C1,并寫出點A1的坐標;(2)將△ABC繞點O順時針旋轉(zhuǎn)的旋轉(zhuǎn)90°后得到△A2B2C2,畫出△A2B2C2,并寫出點C2的坐標.20.(6分)已知二次函數(shù)中,函數(shù)與自變量的部分對應值如下表:············(1)求該二次函數(shù)的表達式;(2)當時,的取值范圍是.21.(6分)(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB=10,點P是半圓O上的一個動點,則△PAB的面積最大值是;(問題探究)如圖2所示,AB、AC、是某新區(qū)的三條規(guī)劃路,其中AB=6km,AC=3km,∠BAC=60°,所對的圓心角為60°.新區(qū)管委會想在路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F,即分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PE、EF、FP之和最短(各物資站點與所在道路之間的距離、路寬均忽略不計).可求得△PEF周長的最小值為km;(拓展應用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB=90°,OA=12米,在圍墻OA和OB上分別有兩個入口C和D,且AC=4米,D是OB的中點,出口E在上.現(xiàn)準備沿CE、DE從入口到出口鋪設兩條景觀小路,在四邊形CODE內(nèi)種花,在剩余區(qū)域種草.①出口E設在距直線OB多遠處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計)②已知鋪設小路CE所用的普通石材每米的造價是200元,鋪設小路DE所用的景觀石材每米的造價是400元.請問:在上是否存在點E,使鋪設小路CE和DE的總造價最低?若存在,求出最低總造價和出口E距直線OB的距離;若不存在,請說明理由.22.(8分)在平面直角坐標系中,二次函數(shù)y=ax2+2nx+c的圖象過坐標原點.(1)若a=-1.①當函數(shù)自變量的取值范圍是-1≤x≤2,且n≥2時,該函數(shù)的最大值是8,求n的值;②當函數(shù)自變量的取值范圍是時,設函數(shù)圖象在變化過程中最高點的縱坐標為m,求m與n的函數(shù)關系式,并寫出n的取值范圍;(2)若二次函數(shù)的圖象還過點A(-2,0),橫、縱坐標都是整數(shù)的點叫做整點.已知點,二次函數(shù)圖象與直線AB圍城的區(qū)域(不含邊界)為T,若區(qū)域T內(nèi)恰有兩個整點,直接寫出a的取值范圍.23.(8分)如圖,在平面直角坐標系中,函數(shù)的圖象與函數(shù)()的圖象相交于點,并與軸交于點.點是線段上一點,與的面積比為2:1.(1),;(2)求點的坐標;(1)若將繞點順時針旋轉(zhuǎn),得到,其中的對應點是,的對應點是,當點落在軸正半軸上,判斷點是否落在函數(shù)()的圖象上,并說明理由.24.(8分)在等邊中,點為上一點,連接,直線與分別相交于點,且.(1)如圖(1),寫出圖中所有與相似的三角形,并選擇其中的一對給予證明;(2)若直線向右平移到圖(2)、圖(3)的位置時,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立請寫出來(不證明),若不成立,請說明理由;(3)探究:如圖(1),當滿足什么條件時(其他條件不變),?請寫出探究結(jié)果,并說明理由(說明:結(jié)論中不得含有未標識的字母).25.(10分)如圖,已知是的直徑,是的弦,點在外,連接,的平分線交于點.(1)若,求證:是的切線;(2)若,,求弦的長.26.(10分)粵東農(nóng)批﹒2019球王故里五華馬拉松賽于12月1日在廣東五華舉行,組委會為了做好運動員的保障工作,沿途設置了4個補給站,分別是:A(粵東農(nóng)批)、B(奧體中心)、C(球王故里)和D(濱江中路),志愿者小明和小紅都計劃各自在這4個補給站中任意選擇一個進行補給服務,每個補給站被選擇的可能性相同.(1)小明選擇補給站C(球王故里)的概率是多少?(2)用樹狀圖或列表的方法,求小明和小紅恰好選擇同一個補給站的概率.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】由題意直接根據(jù)平行線分線段成比例定理進行分析即可求解.【詳解】解:∵a//b//c,∴=.故選:A.【點睛】本題考查平行線分線段成比例定理.注意掌握三條平行線截兩條直線,所得的對應線段成比例.2、C【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.據(jù)此判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、是中心對稱圖形,故此選項正確;D、不是中心對稱圖形,故此選項錯誤;故選:C.【點睛】本題考查的是中心對稱圖形的概念:中心對稱圖形關鍵是尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、D【解析】分析:直接利用反比例函數(shù)圖象上點的坐標特點進而得出答案.詳解:∵反比例函數(shù)y=的圖象經(jīng)過點(3,-2),∴xy=k=-6,A、(-3,-2),此時xy=-3×(-2)=6,不合題意;B、(3,2),此時xy=3×2=6,不合題意;C、(-2,-3),此時xy=-3×(-2)=6,不合題意;D、(-2,3),此時xy=-2×3=-6,符合題意;故選D.點睛:此題主要考查了反比例函數(shù)圖象上點的坐標特征,正確得出k的值是解題關鍵.4、B【分析】由旋轉(zhuǎn)的性質(zhì)知∠AOD=30°,OA=OD,根據(jù)等腰三角形的性質(zhì)及內(nèi)角和定理可得答案.【詳解】由題意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì):①對應點到旋轉(zhuǎn)中心的距離相等.②對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等是解題的關鍵.5、D【分析】首先根據(jù)圖形數(shù)出各環(huán)數(shù)出現(xiàn)的次數(shù),在進行計算眾數(shù)、中位數(shù)、平均數(shù)、方差.【詳解】根據(jù)圖表可得10環(huán)的2次,9環(huán)的2次,8環(huán)的3次,7環(huán)的2次,6環(huán)的1次.所以可得眾數(shù)是8,中位數(shù)是8,平均數(shù)是方差是故選D【點睛】本題主要考查統(tǒng)計的基本知識,關鍵在于眾數(shù)、中位數(shù)、平均數(shù)和方差的概念.特別是方差的公式.6、C【分析】連接OD,根據(jù)∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性質(zhì)即可解決問題.【詳解】連接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=(180°﹣40°)=70°.故選C.【點睛】本題考查了圓周角定理、等腰三角形的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,學會添加常用輔助線,屬于中考??碱}型.7、B【解析】試題分析:從上邊看是一個同心圓,外圓是實線,內(nèi)圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.8、B【詳解】根據(jù)題意可得整副畫的長為(80+2x)cm,寬為(50+2x)cm,則根據(jù)長方形的面積公式可得:(80+2x)(50+2x)=1.故應選:B考點:一元二次方程的應用9、B【分析】根據(jù)拋物線的圖象與性質(zhì)(對稱性、與x軸、y軸的交點)逐個判斷即可.【詳解】∵拋物線開口向下∵對稱軸同號,即∵拋物線與y軸的交點在x軸的上方,則①正確∵對稱軸,即,則②正確∵拋物線的對稱軸,拋物線與x軸的一個交點是∴由拋物線的對稱性得,拋物線與x軸的另一個交點坐標為,從而一元二次方程的解是,則③錯誤由圖象和③的分析可知:當時,,則④正確綜上,正確的結(jié)論有①②④這3個故選:B.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì),熟記函數(shù)的圖象與性質(zhì)是解題關鍵.10、B【解析】本題考查的圓與直線的位置關系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.二、填空題(每小題3分,共24分)11、k≥-1【解析】首先討論當時,方程是一元一次方程,有實數(shù)根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結(jié)合得出答案即可.【詳解】當時,方程是一元一次方程:,方程有實數(shù)根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數(shù)根,則的取值范圍是.故答案為【點睛】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.12、48π【分析】首先利用圓的面積公式即可求得側(cè)面積,利用弧長公式求得圓錐的底面半徑,得到底面面積,據(jù)此即可求得圓錐的全面積.【詳解】解:側(cè)面積是:,底面圓半徑為:,底面積,故圓錐的全面積是:,故答案為:48π【點睛】本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.13、【分析】由于、、分別是的邊、、的中點,就可以得出△,且相似比為,就可求出△,同樣地方法得出△依此類推所以就可以求出的值.【詳解】解:、、分別是的邊、、的中點,、、是的中位線,△,且相似比為,,且,、、分別是△的邊、、的中點,△的△且相似比為,,依此類推,.故答案為:.【點睛】本題考查了三角形中位線定理的運用,相似三角形的判定與性質(zhì)的運用,解題的關鍵是有相似三角形的性質(zhì):面積比等于相似比的平方.14、4【分析】作出⊙O及內(nèi)接正六邊形ABCDEF,連接OC、OB,過O作ON⊥CE于N,易得△COB是等邊三角形,利用三角函數(shù)求出OC,ON,CN,從而得到CE,再求內(nèi)接正三角形ACE的面積即可.【詳解】解:如圖所示,連接OC、OB,過O作ON⊥CE于N,∵多邊形ABCDEF是正六邊形,∴∠COB=60°,∵OC=OB,∴△COB是等邊三角形,∴∠OCM=60°,∴OM=OC?sin∠OCM,∴OC=.∵∠OCN=30°,∴ON=OC=,CN=1,∴CE=1CN=4,∴該圓的內(nèi)接正三角形ACE的面積=,故答案為:4.【點睛】本題考查圓的內(nèi)接多邊形與三角函數(shù),利用邊心距求出圓的半徑是解題的關鍵.15、【分析】觀察表格可得:(0,2)與(2,2)在拋物線上,由此可得拋物線的對稱軸是直線x=1,頂點坐標是(1,1),且拋物線開口向上,于是可得點(-1,5)與(3,5)關于直線x=1對稱,進而可得答案.【詳解】解:根據(jù)表格中的數(shù)據(jù)可知:(0,2)與(2,2)關于直線x=1對稱,所以拋物線的對稱軸是直線x=1,頂點坐標是(1,1),且拋物線開口向上,∴點(-1,5)與(3,5)關于直線x=1對稱,∴當時,的取值范圍是:.故答案為:.【點睛】本題考查了拋物線的性質(zhì),通過觀察得出拋物線的對稱軸是直線x=1,靈活利用拋物線的對稱性是解題的關鍵.16、【分析】根據(jù)一元二次方程的根的判別式,建立關于k的不等式,求出k的取值范圍.【詳解】根據(jù)一元二次方程的根的判別式,建立關于k的不等式,求出k的取值范圍.,,方程有兩個不相等的實數(shù)根,,.故答案為:.【點睛】本題考查了根的判別式.總結(jié):一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.17、+.【解析】一般二次根式的有理化因式是符合平方差公式的特點的式子.據(jù)此作答.【詳解】解:==+.故答案為+.【點睛】本題考查二次根式的有理化.根據(jù)二次根式的乘除法法則進行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特點的式子.18、.【解析】試題分析:根據(jù)作圖可以證明△AOB是等邊三角形,則∠AOB=60°,據(jù)此即可求解.試題解析:連接AB,由畫圖可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB為等邊三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.考點:1.特殊角的三角函數(shù)值;2.等邊三角形的判定與性質(zhì).三、解答題(共66分)19、(1)詳見解析;(2,-2);(2)詳見解析;(-4,4)【分析】(1)分別得出A、B、C三點關于點P的中心對稱點,然后依次連接對應點可得;(2)分別做A、B、C三點繞O點順時針旋轉(zhuǎn)90°的點,然后依次連接對應點即可.【詳解】(1)△A1B1C1如下圖所示.點A1的坐標為(2,-2)(2)△A2B2C2如上圖所示.點C2的坐標為(-4,4).【點睛】本題考查繪制中心對稱圖形和繪制旋轉(zhuǎn)圖形,解題關鍵是繪制圖形中的關鍵點的對應點.20、(1)或;(2)或【分析】(1)根據(jù)拋物線的對稱性從表格中得出其頂點坐標,設出頂點式,任意代入一個非頂點的點的坐標即可求解.(2)結(jié)合表格及函數(shù)解析式及其增減性解答即可.【詳解】(1)由題意得頂點坐標為.設函數(shù)為.由題意得函數(shù)的圖象經(jīng)過點,所以.所以.所以兩數(shù)的表達式為(或);由所給數(shù)據(jù)可知當時,有最小值,二次函數(shù)的對稱軸為.又由表格數(shù)據(jù)可知當時,對應的的范圍為或.【點睛】本題考查的是確定二次函數(shù)的表達式及二次函數(shù)的性質(zhì),掌握二次函數(shù)的對稱性及增減性是關鍵.21、[問題發(fā)現(xiàn)]15;[問題探究];[拓展應用]①出口E設在距直線OB的7.1米處可以使四邊形CODE的面積最大為60平方米,②出口E距直線OB的距離為米.【分析】[問題發(fā)現(xiàn)]△PAB的底邊AB一定,面積最大也就是P點到AB的距離最大,故當OP⊥AB時,時最大,值是5,再計算此時△PAB面積即可;[問題探究]先由對稱將折線長轉(zhuǎn)化線段長,即分別以、所在直線為對稱軸,作出關于的對稱點為,關于的對稱點為,連接,易求得:,而,即當最小時,可取得最小值.[拓展應用]①四邊形CODE面積=S△CDO+S△CDE′,求出S△CDE′面積最大時即可;②先利用相似三角形將費用問題轉(zhuǎn)化為CE+1DE=CE+QE,求CE+QE的最小值問題.然后利用相似三角形性質(zhì)和勾股定理求解即可?!驹斀狻縖問題發(fā)現(xiàn)]解:當OP⊥AB時,時最大,,此時△APB的面積=,故答案為:15;[問題探究]解:如圖1-1,連接,,分別以、所在直線為對稱軸,作出關于的對稱點為,關于的對稱點為,連接,交于點,交于點,連接、,,,,,、、在以為圓心,為半徑的圓上,設,易求得:,,,,當最小時,可取得最小值,,,即點在上時,可取得最小值,如圖1-1,如圖1-3,設的中點為,,,,,,由勾股定理可知:,,,是等邊三角形,,由勾股定理可知:,,,的最小值為.故答案為:[拓展應用]①如圖,作OG⊥CD,垂足為G,延長OG交于點E′,則此時△CDE的面積最大.∵OA=OB=11,AC=4,點D為OB的中點,∴OC=8,OD=6,在Rt△COD中,CD=10,OG=4.8,∴GE′=11-4.8=7.1,∴四邊形CODE面積的最大值為S△CDO+S△CDE′=×6×8+×10×7.1=60,作E′H⊥OB,垂足為H,則E′H=OE′=×11=7.1.答:出口E設在距直線OB的7.1米處可以使四邊形CODE的面積最大為60平方米.②鋪設小路CE和DE的總造價為100CE+400DE=100(CE+1DE).如圖,連接OE,延長OB到點Q,使BQ=OB=11,連接EQ.在△EOD與△QOE中,∠EOD=∠QOE,且,∴△EOD∽△QOE,故QE=1DE.于是CE+1DE=CE+QE,問題轉(zhuǎn)化為求CE+QE的最小值.連接CQ,交于點E′,此時CE+QE取得最小值為CQ,在Rt△COQ中,CO=8,OQ=14,∴CQ=8,故總造價的最小值為1600.作E′H⊥OB,垂足為H,連接OE′,設E′H=x,則QH=3x,在Rt△E′OH中,,解得(舍去),∴出口E距直線OB的距離為米.【點睛】本題考查圓的綜合問題,涉及軸對稱的性質(zhì),勾股定理,垂徑定理,解直角三角形等知識,綜合程度極高,需要學生靈活運用知識.解題關鍵是:利用對稱或相似靈活地將折線長和轉(zhuǎn)化為線段長,從而求折線段的最值。22、(1)①n=1;②(2)【分析】(1)①根據(jù)已知條件可確定拋物線圖象的基本特征,從而列出關于的方程,即可得解;②根據(jù)二次函數(shù)圖象的性質(zhì)分三種情況進行分類討論,從而得到與的分段函數(shù)關系;(2)由得正負進行分類討論,結(jié)合已知條件求得的取值范圍.【詳解】解:(1)∵拋物線過坐標原點∴c=0,a=-1∴y=-x2+2nx∴拋物線的對稱軸為直線x=n,且n≥2,拋物線開口向下∴當-1≤x≤2時,y隨x的增大而增大∴當x=2時,函數(shù)的最大值為8∴-4+4n=8∴n=1.②若則∴拋物線開口向下,在對稱軸右側(cè),隨的增大而減小∴當時,函數(shù)值最大,;若則∴此時,拋物線的頂點為最高點∴;若則∴拋物線開口向下,在對稱軸左側(cè),隨的增大而增大∴當時,函數(shù)值最大,∴綜上所述:(2)結(jié)論:或證明:∵過∴∴①∵若,直線的解析式為,拋物線的對稱軸為直線∴頂點為,對稱軸與直線交點坐標為∴兩個整點為,∵不含邊界∴∴②∵若,區(qū)域內(nèi)已經(jīng)確定有兩個整點,∴在第三項象限和第一象限的區(qū)域內(nèi)都要確保沒有整點∴∴∵當時,直線上的點的縱坐標為,拋物線上的點的縱坐標為∴∴∴故答案為:(1)①;②(2)或【點睛】本題屬于二次函數(shù)的綜合創(chuàng)新題目,熟練掌握二次函數(shù)的性質(zhì)是解題的關鍵,注意分類討論思想方法的應用.23、(1)6,5;(2);(1),點不在函數(shù)的圖象上.【分析】(1)將點分別代入反比例函數(shù)與一次函數(shù)的表達式中即可求出k,b的值;(2)先求出B的坐標,然后求出,進而求出,得出C的縱坐標,然后代入到一次函數(shù)的表達式中即可求出橫坐標;(1)先根據(jù)題意畫出圖形,利用旋轉(zhuǎn)的性質(zhì)和,求出的縱坐標,根據(jù)勾股定理求出橫坐標,然后判斷橫縱坐標之積是否為6,若是,說明在反比例函數(shù)圖象上,反之則不在.【詳解】(1)將點代入反比例函數(shù)中得,∴∴反比例函數(shù)的表達式為將點代入一次函數(shù)中得,∴∴一次函數(shù)的表達式為(2)當時,,解得∵與的面積比為2:1.設點C的坐標為當時,,解得∴(1)如圖,過點作于點D∵繞點順時針旋轉(zhuǎn),得到∴∴點不在函數(shù)的圖象上.【點睛】本題主要考查反比例函數(shù),一次函數(shù)與幾何綜合,掌握反比例函數(shù)的圖象和性質(zhì),待定系數(shù)法是解題的關鍵.24、(1)△BPF∽△EBF,△BPF∽△BCD;(2)均成立,分別為△BPF∽△EBF,△BPF∽△BCD,(3)當BD平分∠ABC時,PF=PE.【分析】(1)由兩角對應相等的三角形是相似三角形找出△BPF∽△EBF,△BPF∽△BCD,這兩組三角形都可由一個公共角和一組60°角來證明;(2)成立,證法同(1);(3)先看PF=PE能得出什么結(jié)論,根據(jù)△BPF∽△EBF,可得BF2=PF?PE=3PF2,因此,因為,可得∠PFB=90°,則∠PBF=30°,由此可得當BD平分∠ABC時,PF=PE.【詳解】解:(1)△BPF∽△EBF,△BPF∽△BCD,證明如下:∵△ABC是等邊三角形,∴∠ABC=∠ACB=∠BAC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論