版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年河南省封丘數(shù)學九上期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖是小明一天看到的一根電線桿的影子的俯視圖,按時間先后順序排列正確的是()A.①②③④ B.④③②① C.④③①② D.②③④①2.如圖,已知雙曲線上有一點,過作垂直軸于點,連接,則的面積為()A. B. C. D.3.四邊形ABCD的對角線互相平分,要使它變?yōu)榫匦?,需要添加的條件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD4.如圖,線段AB兩個端點的坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C的坐標為()A.(3,3) B.(4,3) C.(3,1) D.(4,1)5.如圖所示的圖案是由下列哪個圖形旋轉(zhuǎn)得到的()A. B. C. D.6.拋物線的對稱軸是直線()A.x=-2 B.x=-1 C.x=2 D.x=17.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.8.如圖所示的幾何體是由一個長方體和一個圓柱體組成的,則它的主視圖是()A. B. C. D.9.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.310.估計+1的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間11.一個不透明的袋子中裝有10個只有顏色不同的小球,其中2個紅球,3個黃球,5個綠球,從袋子中任意摸出一個球,則摸出的球是綠球的概率為()A. B. C. D.12.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.12二、填空題(每題4分,共24分)13.擲一枚硬幣三次,正面都朝上的概率是__________.14.如圖,AB為⊙O的直徑,C,D是⊙O上兩點,若∠ABC=50°,則∠D的度數(shù)為______.15.如圖,點為等邊三角形的外心,連接.①___________.②弧以為圓心,為半徑,則圖中陰影部分的面積等于__________.16.計算的結果是_______.17.若二次函數(shù)的圖象經(jīng)過點(3,6),則18.已知圓O的直徑為4,點M到圓心O的距離為3,則點M與⊙O的位置關系是_____.三、解答題(共78分)19.(8分)如圖,點是的內(nèi)心,的延長線交于點,交的外接圓于點,連接,過點作直線,使;(1)求證:直線是的切線;(2)若,,求.20.(8分)用適當?shù)姆椒ń夥匠蹋海?)x2+2x=0(2)x2﹣4x+1=021.(8分)閱讀下列材料,并完成相應的任務.任務:(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別指什么?依據(jù)1:依據(jù)2:(2)當圓內(nèi)接四邊形ABCD是矩形時,托勒密定理就是我們非常熟知的一個定理:(請寫出定理名稱).(3)如圖(3),四邊形ABCD內(nèi)接于⊙O,AB=3,AD=5,∠BAD=60°,點C是弧BD的中點,求AC的長.22.(10分)如圖1,在△ABC中,∠BAC=90°,AB=AC,D為邊AB上一點,連接CD,在線段CD上取一點E,以AE為直角邊作等腰直角△AEF,使∠EAF=90°,連接BF交CD的延長線于點P.(1)探索:CE與BF有何數(shù)量關系和位置關系?并說明理由;(2)如圖2,若AB=2,AE=1,把△AEF繞點A順時針旋轉(zhuǎn)至△AE'F′,當∠E′AC=60°時,求BF′的長.23.(10分)若a≠0且a2﹣2a=0,求方程16x2﹣4ax+1=3﹣12x的根.24.(10分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+625.(12分)在平面直角坐標系xOy中,對稱軸為直線x=1的拋物線y=ax2+bx+8過點(﹣2,0).(1)求拋物線的表達式,并寫出其頂點坐標;(2)現(xiàn)將此拋物線沿y軸方向平移若干個單位,所得拋物線的頂點為D,與y軸的交點為B,與x軸負半軸交于點A,過B作x軸的平行線交所得拋物線于點C,若AC∥BD,試求平移后所得拋物線的表達式.26.解方程.(1)1x1﹣6x﹣1=0;(1)1y(y+1)﹣y=1.
參考答案一、選擇題(每題4分,共48分)1、C【分析】太陽光線下的影子是平行投影,就北半球而言,從早到晚物體影子的指向是:西-西北-北-東北-東,于是即可得到答案.【詳解】根據(jù)平行投影的規(guī)律以及電線桿從早到晚影子的指向規(guī)律,可知:俯視圖的順序為:④③①②,故選C.【點睛】本題主要考查平行投影的規(guī)律,掌握“就北半球而言,從早到晚物體影子的指向是:西-西北-北-東北-東”,是解題的關鍵.2、B【分析】根據(jù)已知雙曲線上有一點,點縱和橫坐標的積是4,的面積是它的二分之一,即為所求.【詳解】解:∵雙曲線上有一點,設A的坐標為(a,b),∴b=∴ab=4∴的面積==2故選:B.【點睛】本題考查了反比例函數(shù)的性質(zhì)和三角形的面積,熟練掌握相關知識是解題的關鍵.3、D【解析】四邊形ABCD的對角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理知,只需添加條件是對角線相等.【詳解】添加AC=BD,
∵四邊形ABCD的對角線互相平分,
∴四邊形ABCD是平行四邊形,
∵AC=BD,根據(jù)矩形判定定理對角線相等的平行四邊形是矩形,
∴四邊形ABCD是矩形,
故選D.【點睛】考查了矩形的判定,關鍵是掌握矩形的判定方法:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.4、A【分析】利用位似圖形的性質(zhì)和兩圖形的位似比,并結合點A的坐標即可得出C點坐標.【詳解】解:∵線段AB的兩個端點坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點C的橫坐標和縱坐標都變?yōu)锳點的一半,∴端點C的坐標為:(3,3).故選A.【點睛】本題主要考查位似變換、坐標與圖形性質(zhì),解題的關鍵是結合位似比和點A的坐標.5、D【解析】由一個基本圖案可以通過旋轉(zhuǎn)等方法變換出一些復合圖案.【詳解】由圖可得,如圖所示的圖案是由繞著一端旋轉(zhuǎn)3次,每次旋轉(zhuǎn)90°得到的,
故選:D.【點睛】此題考查旋轉(zhuǎn)變換,解題關鍵是利用旋轉(zhuǎn)中的三個要素(①旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度)設計圖案.通過旋轉(zhuǎn)變換不同角度或者繞著不同的旋轉(zhuǎn)中心向著不同的方向進行旋轉(zhuǎn)都可設計出美麗的圖案.6、B【解析】令解得x=-1,故選B.7、C【分析】根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【詳解】A.當時,能判斷;B.
當時,能判斷;C.
當時,不能判斷;D.
當時,,能判斷.故選:C.【點睛】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應線段是解決此題的關鍵.8、B【分析】根據(jù)定義進行判斷【詳解】解:從正面看下邊是一個較大的矩形,上便是一個角的矩形,故選B.【點睛】本題考查簡單組合體的三視圖.9、D【分析】找到最簡公分母,去分母后得到關于x的一元二次方程,求解后,再檢驗是否有增根問題可解.【詳解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,檢驗:當x=1時,x2﹣4≠0,所以x=1是原方程的解;當x=-2時,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解為x=1.故選:D.【點睛】本題考查了可化為一元二次方程的分式方程的解法,解答完成后要對方程的根進行檢驗,判定是否有增根產(chǎn)生.10、B【解析】分析:直接利用2<<3,進而得出答案.詳解:∵2<<3,∴3<+1<4,故選B.點睛:此題主要考查了估算無理數(shù)的大小,正確得出的取值范圍是解題關鍵.11、D【解析】隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù).【詳解】解:綠球的概率:P==,故選:D.【點睛】本題考查概率相關概念,熟練運用概率公式計算是解題的關鍵.12、C【分析】設B點的坐標為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關鍵點坐標,根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,
),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數(shù)系數(shù)k的幾何意義.結合圖形,分析圖形面積關系是關鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)題意畫出樹狀圖,再根據(jù)概率公式,即可求解.【詳解】畫樹狀圖如下:∵擲一枚硬幣三次,共有8種可能,正面都朝上只有1種,∴正面都朝上的概率是:.故答案是:【點睛】本題主要考查求簡單事件的概率,畫出樹狀圖,是解題的關鍵.14、40°.【解析】根據(jù)直徑所對的圓心角是直角,然后根據(jù)直角三角形的兩銳角互余求得∠A的度數(shù),最后根據(jù)同弧所對的圓周角相等即可求解.【詳解】∵AB是圓的直徑,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案為:40°.【點睛】本題考查了圓周角定理,直徑所對的圓周角是直角以及同弧所對的圓周角相等,理解定理是關鍵.15、120【分析】①連接OC利用等邊三角形的性質(zhì)可得出,可得出的度數(shù)②陰影部分的面積即求扇形AOC的面積,利用面積公式求解即可.【詳解】解:①連接OC,∵O為三角形的外心,∴OA=OB=OC∴∴∴.②∵∴∴陰影部分的面積即求扇形AOC的面積∵∴陰影部分的面積為:.【點睛】本題考查的知識點有等邊三角形外心的性質(zhì),全等三角形的判定及其性質(zhì)以及扇形的面積公式,利用三角形外心的性質(zhì)得出OA=OB=OC是解題的關鍵.16、【分析】根據(jù)分式的加減運算法則,先通分,再加減.【詳解】解:原式====.故答案為:.【點睛】本題考查了分式的加減運算,解題的關鍵是掌握運算法則和運算順序.17、.【詳解】試題分析:根據(jù)點在拋物線上點的坐標滿足方程的關系,由二次函數(shù)的圖象經(jīng)過點(3,6)得:.18、在圓外【分析】根據(jù)由⊙O的直徑為4,得到其半徑為2,而點M到圓心O的距離為3,得到點M到圓心O的距離大于圓的半徑,根據(jù)點與圓的位置關系即可判斷點M與⊙O的位置關系.【詳解】解:∵⊙O的直徑為4,∴⊙O的半徑為2,∵點M到圓心O的距離為3,∴∴點M與⊙O的位置關系是在圓外.故答案為:在圓外.【點睛】本題考查的是點與圓的位置關系,解決此類問題可通過比較點到圓心的距離d與圓半徑大小關系完成判定.三、解答題(共78分)19、(1)證明見解析;(2).【分析】(1)首先根據(jù)三角形內(nèi)心的性質(zhì)得出,然后利用等弧對等角進行等量轉(zhuǎn)換,得出,最后利用垂徑定理即可得證;(2)利用相似三角形的判定以及性質(zhì)即可得解.【詳解】(1)證明:如圖所示,連接,∵點是的內(nèi)心,∴,∴,∴,又∵,,∴,∴,∴,又∵為半徑,∴直線是的切線;(2)∵,∴,又∵(公共角),∴,∴,即,∵,∴∴∴.【點睛】此題主要考查圓的切線的證明以及相似三角形的判定與性質(zhì),熟練掌握,即可解題.20、(1)x1=0,x2=﹣2;(2)x1=2,x2=2.【分析】根據(jù)方程的特點可適當選擇解方程的方法,利用因式分解法、配方法解一元二次方程即可得到答案.【詳解】(1)或所以,(2),即所以,【點睛】本題考查了解元二次方程的方法,能夠根據(jù)題目的結構特點選擇合適的方法解一元二次方程,熟悉直接開平方法、配方法、公式法以及因式分解法的具體步驟是解題的關鍵.21、(1)同弧所對的圓周角相等;兩角分別對應相等的兩個三角形相似(2)勾股定理(3)AC=【分析】(1)根據(jù)圓周角定理的推論以及三角形相似的判定定理,即可得到答案;(2)根據(jù)矩形的性質(zhì)和托勒密定理,即可得到答案;(3)連接BD,過點C作CE⊥BD于點E.由四邊形ABCD內(nèi)接于⊙O,點C是弧BD的中點,可得?BCD是底角為30°的等腰三角形,進而得BD=2DE=CD,結合托勒密定理,列出方程,即可求解.【詳解】(1)依據(jù)1指的是:同弧所對的圓周角相等;依據(jù)2指的是:兩角分別對應相等的兩個三角形相似.故答案是:同弧所對的圓周角相等;兩角分別對應相等的兩個三角形相似;(2)∵當圓內(nèi)接四邊形ABCD是矩形時,∴AC=BD,BC=AD,AB=CD,∵由托勒密定理得:AC·BD=AB·CD+BC·AD,∴.故答案是:勾股定理;(3)如圖,連接BD,過點C作CE⊥BD于點E.∵四邊形ABCD內(nèi)接于⊙O,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵點C是弧BD的中點,∴弧BC=弧CD,∴BC=CD,∴∠CBD=30°.在Rt△CDE中,DE=CD·cos30°,∴DE=CD,∴BD=2DE=CD.由托勒密定理得:AC·BD=AB·CD+BC·AD.∴AC·CD=3CD+5CD.∴AC=.【點睛】本題主要考查圓的內(nèi)接四邊形的性質(zhì)與相似三角形的綜合,添加輔助線,構造底角為30°的等腰三角形,是解題的關鍵.22、(1)CE=BF,CE⊥BF,理由見解析;(2)【分析】(1)由“SAS”可證△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,進而可得CE⊥BF;(2)過點E'作E'H⊥AC,連接E'C,由直角三角形的性質(zhì)和勾股定理可求E'C的長,由“SAS”可證△F'AB≌△E'AC,可得BF'=CE'=.【詳解】(1)CE=BF,CE⊥BF,理由如下:∵∠BAC=∠EAF=90°,∴∠EAC=∠FAB,又∵AE=AF,AB=AC,∴△AEC≌△AFB(SAS)∴CE=BF,∠ABF=∠ACE,∵∠ADC=∠BDP,∴∠BPD=∠CAD=90°,∴CE⊥BF;(2)過點E'作E'H⊥AC,連接E'C,∵把△AEF繞點A順時針旋轉(zhuǎn)至△AE'F′,∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,∵∠E'AC=60°,∠AHE'=90°,∴∠AE'H=30°,∴AH=AE'=,E'H=AH=,∴HC=AC﹣AH=,∴E'C==,∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,∴△F'AB≌△E'AC(SAS)∴BF'=CE'=.【點睛】本題主要考查勾股定理和三角形全等的判定和性質(zhì)定理,旋轉(zhuǎn)的性質(zhì),添加輔助線,構造直角三角形,是解題的關鍵.23、x1=﹣,x2=【分析】由a≠0且a2﹣2a=0,得a=2,代入方程16x2﹣4ax+1=3﹣12x,求得根即可【詳解】解:∵a≠0且a2﹣2a=0,∴a(a﹣2)=0,∴a=2,故方程16x2﹣8x+1=3﹣12x,整理得8x2+2x﹣1=0,(2x+1)(4x﹣1)=0,解得.【點睛】本題考查了一元二次方程的解法,正確理解題意.熟練掌握一元二次方程的解法步驟是解決本題的關鍵.24、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【詳解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,開方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 樂器買賣合同范例
- 天津濱海職業(yè)學院《汽車電器與電子技術》2023-2024學年第一學期期末試卷
- 員工電梯安裝合同范例
- 變更貸款金額合同范例
- 工廠合伙經(jīng)營協(xié)議合同范例
- 浦東手動叉車租賃合同范例
- 《三角形的面積》第1課時(教學實錄)-2024-2025學年五年級上冊數(shù)學西師大版
- 垃圾員聘用合同范例
- 辦公樓裝飾合同范例
- sbs工程合同范例
- 小學生防詐騙安全教育內(nèi)容
- 人工智能技術賦能多模態(tài)大學英語閱讀教學模式的探究
- 裝修逾期索賠合同范例
- 【MOOC】全新版大學進階英語綜合教程II-內(nèi)蒙古大學 中國大學慕課MOOC答案
- 印刷保密協(xié)議
- 2024年醫(yī)院女工委工作計劃(6篇)
- 輔導員年終匯報
- 中國當代文學專題-003-國開機考復習資料
- 【MOOC】綜合英語-中南大學 中國大學慕課MOOC答案
- 2025年1月“八省聯(lián)考”考前猜想卷歷史試題02 含解析
- 2024年廣東公需科目答案
評論
0/150
提交評論