版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024年浙江省杭州市第二中學數(shù)學高三第一學期期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若函數(shù)有三個零點,則實數(shù)的取值范圍是()A. B. C. D.2.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.3.命題“”的否定為()A. B.C. D.4.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.5.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2826.設全集為R,集合,,則A. B. C. D.7.若復數(shù)z滿足,則復數(shù)z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.9.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉一周后形成的幾何體的表面積為()A. B. C. D.10.已知向量,,若,則()A. B. C. D.11.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調遞增區(qū)間為()A. B. C. D.12.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則________.14.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.15.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.16.已知集合,,則_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數(shù),求隨機變量的分布列及數(shù)學期望.18.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.19.(12分)設函數(shù).(1)若,求實數(shù)的取值范圍;(2)證明:,恒成立.20.(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.21.(12分)已知橢圓:的左、右焦點分別為,,焦距為2,且經過點,斜率為的直線經過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.22.(10分)某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習慣的了解程度.(1)若參與游戲的家長對小孩的飲食習慣完全不了解.(?。┣笏麄冊谝惠営螒蛑校瑢λ姆N食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X<4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據所給函數(shù)解析式,畫出函數(shù)圖像.結合圖像,分段討論函數(shù)的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結合即可求得的范圍;對于當時,結合導函數(shù),結合導數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點定義及應用,根據零點個數(shù)求參數(shù)的取值范圍,導數(shù)的幾何意義應用,屬于中檔題.2、C【解析】
設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.3、C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎題.4、A【解析】
先將函數(shù)解析式化簡為,結合題意可求得切點及其范圍,根據導數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質的綜合應用,由交點及導數(shù)的幾何意義求函數(shù)值,屬于難題.5、B【解析】
將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題6、B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結果.詳解:由題意可得:,結合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉化能力和計算求解能力.7、A【解析】
化簡復數(shù),求得,得到復數(shù)在復平面對應點的坐標,即可求解.【詳解】由題意,復數(shù)z滿足,可得,所以復數(shù)在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何表示方法,其中解答中熟記復數(shù)的運算法則,結合復數(shù)的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.8、C【解析】
先求得的漸近線方程,根據沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.9、B【解析】
根據斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側面展開圖是扇形根據扇形面積公式即可求得組合體的表面積.【詳解】根據“斜二測畫法”可得,,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應用及組合體的表面積求法,難度較易.10、A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.11、D【解析】
根據函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據復合函數(shù)的單調性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調遞增,所以函數(shù)的單調遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質,要熟記復合函數(shù)單調性判斷方法,屬于中檔題.12、B【解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
根據垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點睛】本題考查了根據向量垂直求參數(shù),向量模,意在考查學生的計算能力.14、【解析】
設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、常考題型.15、【解析】
利用等差數(shù)列的通項公式以及等比中項的性質,化簡求出公差與的關系,然后轉化求解的值.【詳解】設等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應用,考查計算能力,屬于基礎題.16、【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(i)(ii)分布列見解析,【解析】
(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數(shù)學期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學期望為.【點睛】本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數(shù)學運算的能力,屬于中檔題.18、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可?。?λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.19、(1)(2)證明見解析【解析】
(1)將不等式化為,利用零點分段法,求得不等式的解集.(2)將要證明的不等式轉化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當時,不等式化為,∴當時,不等式化為,此時無解當時,不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點睛】本題考查絕對值不等式的性質、解法,基本不等式等知識;考查推理論證能力、運算求解能力;考查化歸與轉化,分類與整合思想.20、(1)(2)32【解析】
利用絕對值不等式的解法求出不等式的解集,得到關于的方程,求出的值即可;由知可得,,利用三個正數(shù)的基本不等式,構造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當且僅當,等號成立,即,,時,等號成立,∴的最大值為32.【點睛】本題主要考查含有兩個絕對值不等式的解法和三個正數(shù)的基本不等式的靈活運用;其中利用構造出和為定值即為定值是求解本題的關鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯點;屬于中檔題.21、(1)(2)存在;實數(shù)的取值范圍是【解析】
(1)根據橢圓定義計算,再根據,,的關系計算即可得出橢圓方程;(2)設直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據根與系數(shù)的關系求出的中點坐標,求出的中垂線與軸的交點橫,得出關于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點,使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點.設直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關系可得,設的中點為,,則,,線段的中垂線方程為:,令可得,即.,故,當且僅當即時取等號,,且.的取值范圍是,.【點睛】本題主要考查了橢圓的性質,考查直線與橢圓的位置關系,意在考查學生對這些知識的理解掌握水平和分析推理能力.22、(1)(?。áⅲ┓植急硪娊馕?;(2)理由見解析【解析】
(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結果,利用列舉法求出其中滿足“家長的排序與對應位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.
(ii)根據(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列.
(2)假設家長對小孩的飲食習慣完全不了解,在一輪游戲中,P(X<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東淄博高新區(qū)“服務基層人才專項”招募150人管理單位筆試遴選500模擬題附帶答案詳解
- 師德師風個人述評報告范文(7篇)
- 2025年山東濟寧城投控股集團招聘工作人員109管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東濟南市濟陽國資投資控股集團限公司招聘1人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東濟南商河縣招聘教師442人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東桓臺縣事業(yè)單位招考人員管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東棗莊市嶧城區(qū)法院招考事業(yè)單位工作人員管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東德州齊河縣事業(yè)單位招聘206人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東德州慶云縣人民醫(yī)院招聘備案制工作人員60人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東德州夏津縣融媒體中心招聘4人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 小學數(shù)學人教版一年級下第六單元教材分析(2)
- 深化設計交流分享PPT
- 計量經濟學論文[eviews分析]計量經濟作業(yè)
- 工作場所空氣中有害物質監(jiān)測的采樣規(guī)范課件159-2004
- 醫(yī)院醫(yī)用氣體管路的設計計算(2014)
- 土地儲備專項債券發(fā)行操作流程
- 沙鍋餐飲行業(yè)管理公司采購管理手冊
- 合同范本之采購合同誰保管
- 農村小學生上下學交通安全教育的研究
- 雍琦版法律邏輯學課后習題答案全
- 學校暑期維修方案
評論
0/150
提交評論