版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省淄博第十中學(xué)2024屆高三第二次調(diào)研測試數(shù)學(xué)試題理試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.42.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.3.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.4.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.5.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.6.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.47.?dāng)?shù)列的通項公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要8.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準(zhǔn)線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.9.已知函數(shù),,則的極大值點為()A. B. C. D.10.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.11.若是定義域為的奇函數(shù),且,則A.的值域為 B.為周期函數(shù),且6為其一個周期C.的圖像關(guān)于對稱 D.函數(shù)的零點有無窮多個12.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達(dá)到峰值二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關(guān)于的方程在定義域上有四個不同的解,則實數(shù)的取值范圍是_______.14.已知橢圓C:1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點P(c,2c)作線段PF1,PF2分別交橢圓C于點A、B,若|PA|=|AF1|,則_____.15.在的展開式中,的系數(shù)為______用數(shù)字作答16.學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構(gòu)成的四邊形的面積為.(1)求橢圓C的標(biāo)準(zhǔn)方程:(2)設(shè)A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.18.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.19.(12分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.20.(12分)在平面直角坐標(biāo)系中,已知直線(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點的極坐標(biāo)為,直線與曲線的交點為,求的值.21.(12分)在平面直角坐標(biāo)系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準(zhǔn)線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.22.(10分)某早餐店對一款新口味的酸奶進(jìn)行了一段時間試銷,定價為元/瓶.酸奶在試銷售期間足量供應(yīng),每天的銷售數(shù)據(jù)按照,,,分組,得到如下頻率分布直方圖,以不同銷量的頻率估計概率.從試銷售期間任選三天,求其中至少有一天的酸奶銷量大于瓶的概率;試銷結(jié)束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱瓶,批發(fā)成本元;小箱每箱瓶,批發(fā)成本元.由于酸奶保質(zhì)期短,當(dāng)天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計算時每個分組取中間值作為代表,比如銷量為時看作銷量為瓶).①設(shè)早餐店批發(fā)一大箱時,當(dāng)天這款酸奶的利潤為隨機(jī)變量,批發(fā)一小箱時,當(dāng)天這款酸奶的利潤為隨機(jī)變量,求和的分布列和數(shù)學(xué)期望;②以利潤作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?注:銷售額=銷量×定價;利潤=銷售額-批發(fā)成本.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
設(shè)直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達(dá)定理可得p.【題目詳解】由已知得F(,0),設(shè)直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【題目點撥】本題主要考查了直線與拋物線的相交弦問題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.2、A【解題分析】
建立平面直角坐標(biāo)系,求出直線,設(shè)出點,通過,找出與的關(guān)系.通過數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識,求出其值域,即為的取值范圍.【題目詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點,所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【題目點撥】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運用.3、D【解題分析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【題目詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【題目點撥】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.4、B【解題分析】
①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【題目詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當(dāng)內(nèi)角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【題目點撥】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.5、C【解題分析】
令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【題目詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減.當(dāng)時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【題目點撥】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.6、B【解題分析】
解出,分別代入選項中的值進(jìn)行驗證.【題目詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【題目點撥】本題考查了不等式的解法,考查了集合的關(guān)系.7、A【解題分析】
根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【題目詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【題目點撥】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.8、D【解題分析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【題目詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【題目點撥】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運算的核心素養(yǎng)9、A【解題分析】
求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點即可.【題目詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點為.故選:A.【題目點撥】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點,屬基礎(chǔ)題.10、A【解題分析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【題目詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【題目點撥】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.11、D【解題分析】
運用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【題目詳解】是定義域為的奇函數(shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點有無窮多個;因為,,令,則,即,所以的圖象關(guān)于對稱,由題意無法求出的值域,所以本題答案為D.【題目點撥】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.12、D【解題分析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【題目詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達(dá)到峰值,D選項錯誤.故選:D.【題目點撥】本題考查統(tǒng)計圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由題意可在定義域上有四個不同的解等價于關(guān)于原點對稱的函數(shù)與函數(shù)的圖象有兩個交點,運用參變分離和構(gòu)造函數(shù),進(jìn)而借助導(dǎo)數(shù)分析單調(diào)性與極值,畫出函數(shù)圖象,即可得到所求范圍.【題目詳解】已知定義在上的函數(shù)若在定義域上有四個不同的解等價于關(guān)于原點對稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個交點,聯(lián)立可得有兩個解,即可設(shè),則,進(jìn)而且不恒為零,可得在單調(diào)遞增.由可得時,單調(diào)遞減;時,單調(diào)遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【題目點撥】本題考查利用利用導(dǎo)數(shù)解決方程的根的問題,還考查了等價轉(zhuǎn)化思想與函數(shù)對稱性的應(yīng)用,屬于難題.14、【解題分析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點A為橢圓上頂點,則有b=c,解出B的坐標(biāo)即可得到比值.【題目詳解】因為|PA|=|AF1|,所以點A是線段PF1的中點,又因為點O為線段F1F2的中點,所以O(shè)A∥PF2,且|PF2|=2|OA|,因為點P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點A為橢圓上頂點,所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【題目點撥】本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.15、1【解題分析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【題目詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【題目點撥】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.16、C【解題分析】
假設(shè)獲得一等獎的作品,判斷四位同學(xué)說對的人數(shù).【題目詳解】分別獲獎的說對人數(shù)如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數(shù)3021故獲得一等獎的作品是C.【題目點撥】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①證明見解析;②證明見解析【解題分析】
(1)解方程即可;(2)①設(shè)直線,,,將點的坐標(biāo)用表示,證明即可;②分別用表示,,的面積即可.【題目詳解】(1)解之得:的標(biāo)準(zhǔn)方程為:(2)①,,設(shè)直線代入橢圓方程:設(shè),,,直線,直線,,,,,.②,所以.【題目點撥】本題考查了直接法求橢圓的標(biāo)準(zhǔn)方程、直線與橢圓位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計算量比較大,是一道有一定難度的題.18、(Ⅰ)詳見解析;(Ⅱ).【解題分析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點,建立空間直角坐標(biāo)系,求的平面的一個法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點,故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點,分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.19、(1);(2)【解題分析】
(1)分析可得必在橢圓上,不在橢圓上,代入即得解;(2)設(shè)直線PA,PB的傾斜角分別為,斜率為,可得.則,,利用均值不等式,即得解.【題目詳解】(1)因為關(guān)于軸對稱,所以必在橢圓上,∴不在橢圓上∴,,即.(2)設(shè)橢圓上的點(),設(shè)直線PA,PB的傾斜角分別為,斜率為又∴.,,(不妨設(shè)).故當(dāng)且僅當(dāng),即時等號成立【題目點撥】本題考查了直線和橢圓綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.20、(1)(2)【解題分析】
(1)由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把點極坐標(biāo)化為直角坐標(biāo),直線的參數(shù)方程是過定點的標(biāo)準(zhǔn)形式,因此直接把參數(shù)方程代入曲線的方程,利用參數(shù)的幾何意義求解.【題目詳解】解:(1),則,∴,所以曲線的直角坐標(biāo)方程為,即(2)點的直角坐標(biāo)為,易知.設(shè)對應(yīng)參數(shù)分別為將與聯(lián)立得【題目點撥】本題考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查直線參數(shù)方程,解題時可利用利用參數(shù)方程的幾何意義求直線上兩點間距離問題.21、(1);(2)見解析【解題分析】
(1)根據(jù)拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設(shè)直線,的方程分別為和且,,,可得,,,的坐標(biāo),進(jìn)而可得直線的方程,根據(jù)在直線上,可得,再分別求得,,即可得證;法二:設(shè),,則,根據(jù)直線的斜率不為0,設(shè)出直線的方程為,聯(lián)立直線和拋物線的方程,結(jié)合韋達(dá)定理,分別求出,,化簡,即可得證.【題目詳解】(1)拋物線C的焦點坐標(biāo)為,且該點在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年藥品銷售代理合同示范文本2篇
- 機(jī)械設(shè)計課程設(shè)計 課件
- 某廠空調(diào)冷凍站課程設(shè)計
- 窗戶啟閉課程設(shè)計
- 2025版家用空調(diào)智能控制系統(tǒng)升級改造合同3篇
- 2024煤礦用工承包合同-職工福利待遇與績效考核3篇
- 2024年精裝商業(yè)地產(chǎn)租賃合同范本2篇
- 汽輪機(jī)DCS課程設(shè)計
- 2024版業(yè)務(wù)合作聯(lián)盟合同3篇
- 花花牛課程設(shè)計
- 2024初中數(shù)學(xué)競賽真題訓(xùn)練(學(xué)生版+解析版)(共6個)
- 江蘇省南通市崇川區(qū)2023-2024學(xué)年八上期末數(shù)學(xué)試題(原卷版)
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試歷史試題(解析版)
- 遼寧省沈陽市沈河區(qū)2024-2025學(xué)年九年級上學(xué)期期末道德與法治試題(含答案)
- 江西省贛州市南康區(qū)2023-2024學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 《制造業(yè)成本核算》課件
- 【MOOC】數(shù)學(xué)建模與創(chuàng)新實踐-西安科技大學(xué) 中國大學(xué)慕課MOOC答案
- 2024項目經(jīng)理講安全課
- 中國共產(chǎn)主義青年團(tuán)團(tuán)章
- 采購原材料年終總結(jié)
- 2024-2030年中國隧道建設(shè)行業(yè)前景展望及投資規(guī)劃分析報告
評論
0/150
提交評論