2023-2024學(xué)年山東省濰坊市青州市益都中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
2023-2024學(xué)年山東省濰坊市青州市益都中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
2023-2024學(xué)年山東省濰坊市青州市益都中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
2023-2024學(xué)年山東省濰坊市青州市益都中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
2023-2024學(xué)年山東省濰坊市青州市益都中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年山東省濰坊市青州市益都中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.2.如圖,D、E分別是AB、AC上兩點,CD與BE相交于點O,下列條件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB3.如圖,點A,B,C在⊙O上,∠A=36°,∠C=28°,則∠B=()A.100° B.72° C.64° D.36°4.下列說法正確的是()A.“清明時節(jié)雨紛紛”是必然事件B.要了解路邊行人邊步行邊低頭看手機(jī)的情況,可采取對在路邊行走的學(xué)生隨機(jī)發(fā)放問卷的方式進(jìn)行調(diào)查C.做重復(fù)試驗:拋擲同一枚瓶蓋1000次,經(jīng)過統(tǒng)計得“凸面向上”的頻數(shù)為550次,則可以由此估計拋擲這枚瓶蓋出現(xiàn)“凸面向上”的概率為0.55D.射擊運(yùn)動員甲、乙分別射擊10次且擊中環(huán)數(shù)的方差分別是0.5和1.2,則運(yùn)動員甲的成績較好5.如圖,在矩形ABCD中,點M從點B出發(fā)沿BC向點C運(yùn)動,點E、F別是AM、MC的中點,則EF的長隨著M點的運(yùn)動()A.不變 B.變長 C.變短 D.先變短再變長6.已知一組數(shù)據(jù):-1,0,1,2,3是它的一個樣本,則這組數(shù)據(jù)的平均值大約是()A.5 B.1 C.-1 D.07.如圖,數(shù)學(xué)興趣小組的小穎想測量教學(xué)樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是0.8m,但當(dāng)她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),他先測得留在墻壁上的影高為1.2m,又測得地面的影長為2.6m,請你幫她算一下,樹高是()A.4.25m B.4.45m C.4.60m D.4.75m8.如果2a=5b,那么下列比例式中正確的是()A. B. C. D.9.下列是隨機(jī)事件的是()A.口袋里共有5個球,都是紅球,從口袋里摸出1個球是黃球B.平行于同一條直線的兩條直線平行C.?dāng)S一枚圖釘,落地后圖釘針尖朝上D.?dāng)S一枚質(zhì)地均勻的骰子,擲出的點數(shù)是710.下列事件是必然事件的是()A.通常加熱到100℃,水沸騰B.拋一枚硬幣,正面朝上C.明天會下雨D.經(jīng)過城市中某一有交通信號燈的路口,恰好遇到紅燈11.一個圓柱的三視圖如圖所示,若其俯視圖為圓,則這個圓柱的體積為()A. B. C. D.12.⊙O的半徑為3,點P到圓心O的距離為5,點P與⊙O的位置關(guān)系是()A.無法確定 B.點P在⊙O外 C.點P在⊙O上 D.點P在⊙O內(nèi)二、填空題(每題4分,共24分)13.如圖,內(nèi)接于,于點,,若的半徑,則的長為______.14.拋物線y=x2+3與y軸的交點坐標(biāo)為__________.15.如圖,將Rt△ABC繞點A逆時針旋轉(zhuǎn)40°,得到Rt△AB′C′,使AB′恰好經(jīng)過點C,連接BB′,則∠BAC′的度數(shù)為_____°.16.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,如果AP=3,那么PP′=______.17.已知函數(shù),當(dāng)時,函數(shù)值y隨x的增大而增大.18.已知m是方程x2﹣3x﹣1=0的一個根,則代數(shù)式2m2﹣6m﹣7的值等于_____.三、解答題(共78分)19.(8分)如圖,在矩形中,,為邊上一點,把沿直線折疊,頂點折疊到,連接與交于點,連接與交于點,若.(1)求證:;(2)當(dāng)時,,求的長;(3)連接,直接寫出四邊形的形狀:.當(dāng)時,并求的值.20.(8分)閱讀下面內(nèi)容,并按要求解決問題:問題:“在平面內(nèi),已知分別有個點,個點,個點,5個點,…,n個點,其中任意三個點都不在同一條直線上.經(jīng)過每兩點畫一條直線,它們可以分別畫多少條直線?”探究:為了解決這個問題,希望小組的同學(xué)們設(shè)計了如下表格進(jìn)行探究:(為了方便研究問題,圖中每條線段表示過線段兩端點的一條直線)請解答下列問題:(1)請幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個點時,直線條數(shù)為;(2)若某同學(xué)按照本題中的方法,共畫了條直線,求該平面內(nèi)有多少個已知點.21.(8分)如圖,以為直徑作半圓,點是半圓弧的中點,點是上的一個動點(點不與點、重合),交于點,延長、交于點,過點作,垂足為.(1)求證:是的切線;(2)若的半徑為1,當(dāng)點運(yùn)動到的三等分點時,求的長.22.(10分)如圖,菱形的邊在軸上,點的坐標(biāo)為,點在反比例函數(shù)()的圖象上,直線經(jīng)過點,與軸交于點,連接,.(1)求,的值;(2)求的面積.23.(10分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.(1)求該拋物線的表達(dá)式;(2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標(biāo)為t.①當(dāng)點P在直線BC的下方運(yùn)動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.24.(10分)如圖,在四邊形ABCD中,AB∥CD,AB=AD,對角線AC、BD交于點O,AC平分∠BAD.求證:四邊形ABCD為菱形.25.(12分)如圖,某中學(xué)九年級“智慧之星”數(shù)學(xué)社團(tuán)的成員利用周末開展課外實踐活動,他們要測量中心公園內(nèi)的人工湖中的兩個小島,間的距離.借助人工湖旁的小山,某同學(xué)從山頂處測得觀看湖中小島的俯角為,觀看湖中小島的俯角為.已知小山的高為180米,求小島,間的距離.26.小明和小亮玩一個游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.(2)你認(rèn)為這個游戲規(guī)則對雙方公平嗎?說說你的理由.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,是中心對稱圖形,故此選項正確;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;故選:B.【點睛】本題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.2、C【解析】試題分析:∵∠A=∠A,∴當(dāng)∠B=∠C或∠ADC=∠AEB或AD:AC=AE:AB時,△ABE和△ACD相似.故選C.考點:相似三角形的判定.3、C【詳解】試題分析:設(shè)AC和OB交于點D,根據(jù)同弧所對的圓心角的度數(shù)等于圓周角度數(shù)2倍可得:∠O=2∠A=72°,根據(jù)∠C=28°可得:∠ODC=80°,則∠ADB=80°,則∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本題選C.4、C【分析】根據(jù)隨機(jī)事件的概念、抽樣調(diào)查的特點、方差的意義及概率公式分別判斷可得.【詳解】解:A、“清明時節(jié)雨紛紛”是隨機(jī)事件,此選項錯誤;B、要了解路邊行人邊步行邊低頭看手機(jī)的情況,采取對在路邊行走的學(xué)生隨機(jī)發(fā)放問卷的方式進(jìn)行調(diào)查不具代表性,此選項錯誤;C、做重復(fù)試驗:拋擲同一枚瓶蓋1000次,經(jīng)過統(tǒng)計得“凸面向上”的頻數(shù)為550次,則可以由此估計拋擲這枚瓶蓋出現(xiàn)“凸面向上”的概率為0.55,正確;D、射擊運(yùn)動員甲、乙分別射擊10次且擊中環(huán)數(shù)的方差分別是0.5和1.2,則運(yùn)動員甲的成績較穩(wěn)定,此選項錯誤;5、A【分析】由題意得EF為三角形AMC的中位線,由中位線的性質(zhì)可得:EF的長恒等于定值A(chǔ)C的一半.【詳解】解:∵E,F(xiàn)分別是AM,MC的中點,

∴,

∵A、C是定點,

∴AC的的長恒為定長,

∴無論M運(yùn)動到哪個位置EF的長不變,

故選A.【點睛】此題考查的是三角形中位線的性質(zhì),即三角形的中位線平行且等于第三邊的一半.6、B【分析】根據(jù)平均數(shù)的定義計算即可.【詳解】這組數(shù)據(jù)的平均數(shù)為(﹣1+0+1+2+3)÷5=1.故選:B.【點睛】本題考查了平均數(shù).掌握平均數(shù)的求法是解答本題的關(guān)鍵.7、B【分析】此題首先要知道在同一時刻任何物體的高與其影子的比值是相同的,所以竹竿的高與其影子的比值和樹高與其影子的比值相同,利用這個結(jié)論可以求出樹高.【詳解】如圖,設(shè)BD是BC在地面的影子,樹高為x,

根據(jù)竹竿的高與其影子的比值和樹高與其影子的比值相同得而CB=1.2,

∴BD=0.96,

∴樹在地面的實際影子長是0.96+2.6=3.56,

再竹竿的高與其影子的比值和樹高與其影子的比值相同得,

∴x=4.45,

∴樹高是4.45m.

故選B.【點睛】抓住竹竿的高與其影子的比值和樹高與其影子的比值相同是關(guān)鍵.8、C【分析】由2a=5b,根據(jù)比例的性質(zhì),即可求得答案.【詳解】∵2a=5b,∴或.故選:C.【點睛】此題主要考查比例的性質(zhì),解題的關(guān)鍵是熟知等式與分式的性質(zhì).9、C【分析】根據(jù)必然事件、不可能事件、隨機(jī)事件的概念可區(qū)別各類事件.【詳解】A.口袋里共有5個球,都是紅球,從口袋里摸出1個球是黃球,是不可能事件,故不符合題意;B.平行于同一條直線的兩條直線平行,是必然事件,故不符合題意;C.擲一枚圖釘,落地后圖釘針尖朝上,是隨機(jī)事件,故符合題意;D.擲一枚質(zhì)地均勻的骰子,擲出的點數(shù)是7,是不可能事件,故不符合題意,故選C.【點睛】本題考查了隨機(jī)事件,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、A【解析】解:A.通常加熱到100℃,水沸騰,是必然事件,故A選項符合題意;B.拋一枚硬幣,正面朝上,是隨機(jī)事件,故B選項不符合題意;C.明天會下雨,是隨機(jī)事件,故C選項不符合題意;D.經(jīng)過城市中某一有交通信號燈的路口,恰好遇到紅燈,是隨機(jī)事件,故D選項不符合題意.故選A.【點睛】解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.11、B【分析】先由三視圖得出圓柱的底面直徑和高,然后根據(jù)圓柱的體積=底面積×高計算即可.【詳解】解:由三視圖可知圓柱的底面直徑為,高為,底面半徑為,,故選B.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.12、B【分析】根據(jù)點在圓上,則d=r;點在圓外,d>r;點在圓內(nèi),d<r(d即點到圓心的距離,r即圓的半徑).【詳解】解:∵OP=5>3,

∴點P與⊙O的位置關(guān)系是點在圓外.

故選:B.【點睛】本題主要考查了點與圓的位置關(guān)系,理解并掌握點和圓的位置關(guān)系與數(shù)量之間的等價關(guān)系是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】連接OC,先證出△ADB為等腰直角三角形,從而得出∠ABD=45°,然后根據(jù)同弧所對的圓周角是圓心角的一半即可求出∠AOC,然后根據(jù)勾股定理即可求出AC.【詳解】解:連接OC∵,,∴△ADB為等腰直角三角形∴∠ABD=45°∴∠AOC=2∠ABD=90°∵的半徑∴OC=OA=2在Rt△OAC中,AC=故答案為:.【點睛】此題考查的是等腰直角三角形的判定及性質(zhì)、圓周角定理和勾股定理,掌握等腰直角三角形的判定及性質(zhì)、同弧所對的圓周角是圓心角的一半和利用勾股定理解直角三角形是解決此題的關(guān)鍵.14、(0,3)【分析】由于拋物線與y軸的交點的橫坐標(biāo)為0,代入解析式即可求出縱坐標(biāo).【詳解】解:當(dāng)x=0時,y=3,則拋物線y=x2+3與y軸交點的坐標(biāo)為(0,3),故答案為(0,3).【點睛】此題主要考查了拋物線與坐標(biāo)軸的交點坐標(biāo)與解析式的關(guān)系,利用解析式中自變量為0即可求出與y軸交點的坐標(biāo).15、1【分析】由圖形選擇的性質(zhì),∠BAC=∠B′AC′則問題可解.【詳解】解:∵Rt△ABC繞點A逆時針旋轉(zhuǎn)40°,得到Rt△AB′C′,使AB′恰好經(jīng)過點C,∴∠BAC=∠B′AC′=40°,∴∠BAC′=∠BAC+∠B′AC′=1°,故答案為:1.【點睛】本題考查了圖形旋轉(zhuǎn)的性質(zhì),解答關(guān)鍵是應(yīng)用旋轉(zhuǎn)過程中旋轉(zhuǎn)角不變的性質(zhì).16、3【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大?。驹斀狻拷猓焊鶕?jù)旋轉(zhuǎn)的性質(zhì),可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案為.【點睛】本題考查了圖形的旋轉(zhuǎn)變化,旋轉(zhuǎn)得到的圖形與原圖形全等,解答時要分清旋轉(zhuǎn)角和對應(yīng)線段.17、x≤﹣1.【解析】試題分析:∵=,a=﹣1<0,拋物線開口向下,對稱軸為直線x=﹣1,∴當(dāng)x≤﹣1時,y隨x的增大而增大,故答案為x≤﹣1.考點:二次函數(shù)的性質(zhì).18、﹣1.【分析】根據(jù)一元二次方程的解的概念可得關(guān)于m的方程,變形后整體代入所求式子即得答案.【詳解】解:∵m是方程x2﹣3x﹣1=0的一個根,∴m2﹣3m﹣1=0,∴m2﹣3m=1,∴2m2﹣6m﹣7=2(m2﹣3m)﹣7=2×1﹣7=﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的解的概念和代數(shù)式求值,熟練掌握整體代入的數(shù)學(xué)思想和一元二次方程的解的概念是解題關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2);(3)菱形,24【分析】(1)由題意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,則可證△ABE∽△DEC;

(2)設(shè)AE=x,則DE=13-x,由相似三角形的性質(zhì)可得,即:,可求x的值,即可得DE=9,根據(jù)勾股定理可求CE的長;

(3)由折疊的性質(zhì)可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行線的性質(zhì)可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,則四邊形C'QCP是菱形,通過證△C'EQ∽△EDC,可得,即可求CE?EQ的值.【詳解】證明:(1)∵CE⊥BE,

∴∠BEC=90°,

∴∠AEB+∠CED=90°,

又∵∠ECD+∠CED=90°,

∴∠AEB=∠ECD,

又∵∠A=∠D=90°,

∴△ABE∽△DEC

(2)設(shè)AE=x,則DE=13-x,

由(1)知:△ABE∽△DEC,

∴,即:

∴x2-13x+36=0,

∴x1=4,x2=9,

又∵AE<DE

∴AE=4,DE=9,

在Rt△CDE中,由勾股定理得:

(3)如圖,

∵折疊,

∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,

∵CE⊥BC',∠BC'P=90°,

∴CE∥C'P,

∴∠C'PQ=∠CQP,

∴∠CQP=∠CPQ,

∴CQ=CP,

∴CQ=CP=C'Q=C'P,

∴四邊形C'QCP是菱形,

故答案為:菱形

∵四邊形C'QCP是菱形,

∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD

又∵∠C'EQ=∠D=90°

∴△C'EQ∽△EDC

即:CE?EQ=DC?C'Q=6×4=24【點睛】本題是相似形綜合題,考查了矩形的性質(zhì),菱形的判定和性質(zhì),折疊的性質(zhì),相似三角形的判定和性質(zhì),勾股定理等性質(zhì),靈活運(yùn)用相關(guān)的性質(zhì)定理、綜合運(yùn)用知識是解題的關(guān)鍵.20、(1);(2)8.【分析】(1)根據(jù)過兩點的直線有1條,過不在同一直線上的三點的直線有3條,過任何三點都不在一條直線上四點的直線有6條,按此規(guī)律,由特殊到一般,總結(jié)出公式:;(2)將28代入公式求n即可.【詳解】解:(1)當(dāng)平面內(nèi)有2個點時,可以畫條直線;當(dāng)平面內(nèi)有3個點時,可以畫條直線;當(dāng)平面內(nèi)有4個點時,可以畫條直線;…當(dāng)平面內(nèi)有n(n≥2)個點時,可以畫條直線;設(shè)該平面內(nèi)有個已知點.由題意,得解得(舍)答:該平面內(nèi)有個已知點【點睛】此題是探求規(guī)律題并考查解一元二次方程,讀懂題意,找出規(guī)律是解題的關(guān)鍵,解題時候能夠進(jìn)行知識的遷移是一種重要的解題能力.21、(1)詳見解析;(2)或【分析】(1)連接,根據(jù)同弧所對的圓周角相等、直徑所對的圓周角等于90°和等弧所對的弦相等可得:,,,從而證出≌,然后根據(jù)等腰三角形的性質(zhì)即可求出∠ACF和∠ACO,從而求出∠OCF,即可證出結(jié)論;(2)先根據(jù)等腰直角三角形的性質(zhì)求出AC、BC,再根據(jù)一個弧有兩個三等分點分類討論:情況一:當(dāng)點為靠近點的三等分點時,根據(jù)三等分點即可求出,再根據(jù)銳角三角函數(shù)即可求出CE,從而求出AE;情況二:當(dāng)點為靠近點的三等分點時,根據(jù)三等分點即可求出,從而求出AP,再推導(dǎo)出∠PDE=30°,設(shè),用表示出DE、CE和AE的長,從而利用勾股定理列出方程即可求出,從而求出AE.【詳解】(1)證明:連接∵為的直徑∴∴根據(jù)同弧所對的圓周角相等可得,又∵是的中點∴∴在與中∴≌∴又∵∴平分∴∵,為的中點∴平分∴∴∴∴為的切線(2)證明:如圖2∵的半徑為1∴又∵,∴情況一:如圖2當(dāng)點為靠近點的三等分點時∵點是的三等分點∴∴在Rt△BCE中,∴情況二:如圖3當(dāng)點為靠近點的三等分點時∵點是的三等分點∴∴∴又∵∴又∵,∴∴∴∴設(shè),則∴∴又∵∴即解出:或(應(yīng)小于,故舍去)∴綜上所述:或【點睛】此題考查的是圓的基本性質(zhì)、圓周角定理、切線的判定、等腰三角形的性質(zhì)和解直角三角形,掌握同弧所對的圓周角相等、直徑所對的圓周角是90°、切線的判定定理和用勾股定理和銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.22、(1),;(2).【解析】(1)由菱形的性質(zhì)可知,,點代入反比例函數(shù),求出;將點代入,求出;(2)求出直線與軸和軸的交點,即可求的面積;【詳解】解:(1)由已知可得,∵菱形,∴,,∵點在反比例函數(shù)的圖象上,∴,將點代入,∴;(2),直線與軸交點為,∴;【點睛】本題考查反比例函數(shù)、一次函數(shù)的圖象及性質(zhì),菱形的性質(zhì);能夠?qū)⒔柚庑蔚倪呴L和菱形邊的平行求點的坐標(biāo)是解題的關(guān)鍵.23、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標(biāo)為P(﹣,﹣)或(0,5).【解析】(1)將點A、B坐標(biāo)代入二次函數(shù)表達(dá)式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線BC的表達(dá)式為:y=x+1,設(shè)點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設(shè)直線BP與CD交于點H,當(dāng)點P在直線BC下方時,求出線段BC的中點坐標(biāo)為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達(dá)式為:y=﹣x﹣4…③,同理直線CD的表達(dá)式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達(dá)式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當(dāng)點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達(dá)式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標(biāo)代入二次函數(shù)表達(dá)式得:,解得:,故拋物線的表達(dá)式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線BC的表達(dá)式為:y=x+1…②,設(shè)點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當(dāng)t=﹣時,其最大值為;②設(shè)直線BP與CD交于點H,當(dāng)點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標(biāo)為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設(shè)BC中垂線的表達(dá)式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論