2023-2024學(xué)年重慶市江津、聚奎中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第1頁
2023-2024學(xué)年重慶市江津、聚奎中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第2頁
2023-2024學(xué)年重慶市江津、聚奎中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第3頁
2023-2024學(xué)年重慶市江津、聚奎中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第4頁
2023-2024學(xué)年重慶市江津、聚奎中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年重慶市江津、聚奎中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,正六邊形內(nèi)接于,正六邊形的周長是12,則的半徑是()A.3 B.2 C. D.2.如圖,已知正方形ABCD,將對角線BD繞著點(diǎn)B逆時針旋轉(zhuǎn),使點(diǎn)D落在CB的延長線上的D′點(diǎn)處,那么sin∠AD′B的值是()A. B. C. D.3.如圖,在中,D在AC邊上,,O是BD的中點(diǎn),連接AO并延長交BC于E,則()A.1:2 B.1:3 C.1:4 D.2:34.如圖,△ABC中,∠A=30°,點(diǎn)O是邊AB上一點(diǎn),以點(diǎn)O為圓心,以O(shè)B為半徑作圓,⊙O恰好與AC相切于點(diǎn)D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是()A.2 B. C. D.5.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)i論:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個6.由不能推出的比例式是()A. B.C. D.7.已知△ABC的外接圓⊙O,那么點(diǎn)O是△ABC的()A.三條中線交點(diǎn) B.三條高的交點(diǎn)C.三條邊的垂直平分線的交點(diǎn) D.三條角平分線交點(diǎn)8.二次函數(shù)=ax2+bx+c的部分對應(yīng)值如表,利用二次的數(shù)的圖象可知,當(dāng)函數(shù)值y>0時,x的取值范圍是()x﹣3﹣2﹣1012y﹣12﹣50343A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>39.P(3,-2)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)10.若A(﹣3,y1),,C(2,y3)在二次函數(shù)y=x2+2x+c的圖象上,則y1,y2,y3的大小關(guān)系是()A.y2<y1<y3 B.y1<y3<y2 C.y1<y2<y3 D.y3<y2<y111.如圖,已知拋物線y=x2+px+q的對稱軸為直線x=﹣2,過其頂點(diǎn)M的一條直線y=kx+b與該拋物線的另一個交點(diǎn)為N(﹣1,﹣1).若要在y軸上找一點(diǎn)P,使得PM+PN最小,則點(diǎn)P的坐標(biāo)為().A.(0,﹣2) B.(0,﹣) C.(0,﹣) D.(0,﹣)12.已知關(guān)于x的一元二次方程kx2-2x+1=0有實(shí)數(shù)根,則k的取值范圍是().A.k<1 B.k≤1 C.k≤1且k≠0 D.k<1且k≠0二、填空題(每題4分,共24分)13.如圖,點(diǎn)在函數(shù)的圖象上,直線分別與軸、軸交于點(diǎn),且點(diǎn)的橫坐標(biāo)為4,點(diǎn)的縱坐標(biāo)為,則的面積是________.14.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.15.計(jì)算:=________.16.連接三角形各邊中點(diǎn)所得的三角形面積與原三角形面積之比為:.17.若關(guān)于x的一元二次方程(k﹣1)x2+4x+1=0有實(shí)數(shù)根,則k的取值范圍是_____.18.如圖,在△ABC中,∠BAC=35°,將△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)50°,得到△AB′C′,則∠B′AC的度數(shù)是.三、解答題(共78分)19.(8分)如圖是一副撲克牌中的三張牌,將它們正面向下洗均勻,甲同學(xué)從中隨機(jī)抽取一張牌后放回,乙同學(xué)再從中隨機(jī)抽取一張牌,用樹狀圖(或列表)的方法,求抽出的兩張牌中,牌面上的數(shù)字都是偶數(shù)的概率.20.(8分)如圖,拋物線的頂點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為,為直線下方拋物線上一點(diǎn),連接,.(1)求拋物線的解析式.(2)的面積是否有最大值?如果有,請求出最大值和此時點(diǎn)的坐標(biāo);如果沒有,請說明理由.(3)為軸右側(cè)拋物線上一點(diǎn),為對稱軸上一點(diǎn),若是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形,請直接寫出點(diǎn)的坐標(biāo).21.(8分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,點(diǎn)D與點(diǎn)A關(guān)于y軸對稱,tan∠ACB=,點(diǎn)E、F分別是線段AD、AC上的動點(diǎn),(點(diǎn)E不與點(diǎn)A,D重合),且∠CEF=∠ACB.(1)求AC的長和點(diǎn)D的坐標(biāo);(2)求證:;(3)當(dāng)△EFC為等腰三角形時,求點(diǎn)E的坐標(biāo).22.(10分)某服裝店因?yàn)閾Q季更新,采購了一批新服裝,有A、B兩種款式共100件,花費(fèi)了6600元,已知A種款式單價(jià)是80元/件,B種款式的單價(jià)是40元/件(1)求兩種款式的服裝各采購了多少件?(2)如果另一個服裝店也想要采購這兩種款式的服裝共60件,且采購服裝的費(fèi)用不超過3300元,那么A種款式的服裝最多能采購多少件?23.(10分)如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).(1)請?jiān)趫D中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.24.(10分)計(jì)算:(1);(2)先化簡,再求值.,其中a=2020;25.(12分)已知關(guān)于的方程;(1)當(dāng)為何值時,方程有兩個不相等的實(shí)數(shù)根;(2)若為滿足(1)的最小正整數(shù),求此時方程的兩個根,.26.?dāng)?shù)學(xué)活動課上,老師提出問題:如圖1,有一張長,寬的長方形紙板,在紙板的四個角裁去四個相同的小正方形,然后把四邊折起來,做成-一個無蓋的盒子,問小正方形的邊長為多少時,盒子的體積最大.下面是探究過程,請補(bǔ)充完整:(1)設(shè)小正方形的邊長為,體積為,根據(jù)長方體的體積公式得到和的關(guān)系式;(2)確定自變量的取值范圍是(3)列出與的幾組對應(yīng)值.······(4)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn)畫出該函數(shù)的圖象如圖2,結(jié)合畫出的函數(shù)圖象,當(dāng)小正方形的邊長約為時,盒子的體積最大,最大值約為.(估讀值時精確到)

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)題意畫出圖形,求出正六邊形的邊長,再求出∠AOB=60°即可求出的半徑.【詳解】解:如圖,連結(jié)OA,OB,∵ABCDEF為正六邊形,

∴∠AOB=360°×=60°,

∴△AOB是等邊三角形,∵正六邊形的周長是12,∴AB=12×=2,∴AO=BO=AB=2,故選B.【點(diǎn)睛】本題考查了正多邊形和圓,以及正六邊形的性質(zhì),根據(jù)題意畫出圖形,作出輔助線求出∠AOB=60°是解答此題的關(guān)鍵.2、A【分析】設(shè),根據(jù)正方形的性質(zhì)可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得的長,然后由勾股定理可得的長,從而根據(jù)正弦的定義即可得.【詳解】設(shè)由正方形的性質(zhì)得由旋轉(zhuǎn)的性質(zhì)得在中,則故選:A.【點(diǎn)睛】本題考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、正弦的定義等知識點(diǎn),根據(jù)旋轉(zhuǎn)的性質(zhì)得出的長是解題關(guān)鍵.3、B【分析】過O作BC的平行線交AC與G,由中位線的知識可得出,根據(jù)已知和平行線分線段成比例得出,再由同高不同底的三角形中底與三角形面積的關(guān)系可求出的比.【詳解】解:如圖,過O作,交AC于G,∵O是BD的中點(diǎn),∴G是DC的中點(diǎn).又,設(shè),又,,故選B.【點(diǎn)睛】考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運(yùn)用中位線定理和三角形面積公式.4、B【分析】連接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的長;由BD平分∠ABC,OB=OD可得OD與BC間的位置關(guān)系,根據(jù)平行線分線段成比例定理,得結(jié)論.【詳解】連接OD∵OD是⊙O的半徑,AC是⊙O的切線,點(diǎn)D是切點(diǎn),∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故選B.【點(diǎn)睛】本題考查了圓的切線的性質(zhì)、含30°角的直角三角形的性質(zhì)及平行線分線段成比例定理,解決本題亦可說明∠C=90°,利用∠A=30°,AB=6,先得AC的長,再求CD.遇切點(diǎn)連圓心得直角,是通常添加的輔助線.5、C【分析】首先根據(jù)開口方向確定a的取值范圍,根據(jù)對稱軸的位置確定b的取值范圍,根據(jù)拋物線與y軸的交點(diǎn)確定c的取值范圍,根據(jù)拋物線與x軸是否有交點(diǎn)確定b2﹣4ac的取值范圍,根據(jù)x=﹣1函數(shù)值可以判斷.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸的交點(diǎn)在軸的上方,,,故①錯誤;拋物線與軸有兩個交點(diǎn),,故②正確;對稱軸,,,故③正確;根據(jù)圖象可知,當(dāng)時,,故④正確;故選:.【點(diǎn)睛】此題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求與的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用是解題關(guān)鍵.6、C【解析】根據(jù)比例的性質(zhì)依次判斷即可.【詳解】設(shè)x=2a,y=3a,A.正確,不符合題意;B.,故該項(xiàng)正確,不符合題意;C.,故該項(xiàng)不正確,符合題意;D.正確,不符合題意;【點(diǎn)睛】此題考查比例的基本性質(zhì),熟記性質(zhì)并運(yùn)用解題是解此題的關(guān)鍵.7、C【分析】根據(jù)三角形外接圓圓心的確定方法,結(jié)合垂直平分線的性質(zhì),即可求得.【詳解】已知⊙O是△ABC的外接圓,那么點(diǎn)O一定是△ABC的三邊的垂直平分線的交點(diǎn),故選:C.【點(diǎn)睛】本題考查三角形外接圓圓心的確定,屬基礎(chǔ)題.8、C【分析】利用表中數(shù)據(jù)和拋物線的對稱性得到拋物線的對稱軸為直線x=1,則拋物線的頂點(diǎn)坐標(biāo)為(1,4),所以拋物線開口向下,則拋物線與x軸的一個交點(diǎn)坐標(biāo)為(3,1),然后寫出拋物線在x軸上方所對應(yīng)的自變量的范圍即可.【詳解】∵拋物線經(jīng)過點(diǎn)(1,3),(2,3),∴拋物線的對稱軸為直線,∴拋物線的頂點(diǎn)坐標(biāo)為(1,4),拋物線開口向下,∵拋物線與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,1),∴拋物線與x軸的一個交點(diǎn)坐標(biāo)為(3,1),∴當(dāng)﹣1<x<3時,y>1.故選:C.【點(diǎn)睛】本題考查了二次函數(shù)與軸的交點(diǎn)、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是要認(rèn)真觀察,利用表格中的信息解決問題.9、B【解析】根據(jù)平面坐標(biāo)系中點(diǎn)P(x,y)關(guān)于原點(diǎn)對稱點(diǎn)是(-x,-y)即可.【詳解】解:關(guān)于原點(diǎn)對稱的點(diǎn)的橫縱坐標(biāo)都互為相反數(shù),因此P(3,-2)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(-3,2).故答案為B.【點(diǎn)睛】本題考查關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)的關(guān)系,解題的關(guān)鍵是理解并識記關(guān)于原點(diǎn)對稱點(diǎn)的特點(diǎn).10、A【分析】求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性判斷即可.【詳解】解:對稱軸為直線x=﹣=﹣1,∵a=1>0,∴x<﹣1時,y隨x的增大而減小,x>﹣1時,y隨x的增大而增大,∴y2<y1<y1.故選:A.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,求出對稱軸解析式,然后利用二次函數(shù)的增減性求解是解題的關(guān)鍵.11、B【解析】根據(jù)線段垂直平分線的性質(zhì),可得N,′根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)配方法,可得M點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)之間線段最短,可得MN′,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點(diǎn)坐標(biāo).【詳解】如圖,作N點(diǎn)關(guān)于y軸的對稱點(diǎn)N′,連接MN′交y軸于P點(diǎn),將N點(diǎn)坐標(biāo)代入拋物線,并聯(lián)立對稱軸,得,解得,y=x2+4x+2=(x+2)2-2,M(-2,-2),N點(diǎn)關(guān)于y軸的對稱點(diǎn)N′(1,-1),設(shè)MN′的解析式為y=kx+b,將M、N′代入函數(shù)解析式,得,解得,MN′的解析式為y=x-,當(dāng)x=0時,y=-,即P(0,-),故選:B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),利用了線段垂直平分線的性質(zhì),兩點(diǎn)之間線段最短得出P點(diǎn)的坐標(biāo)是解題關(guān)鍵.12、C【解析】分析:判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了.關(guān)于x的一元二次方程kx2-2x+1=1有實(shí)數(shù)根,則△=b2-4ac≥1.詳解:∵a=k,b=-2,c=1,∴△=b2-4ac=(-2)2-4×k×1=4-4k≥1,k≤1,∵k是二次項(xiàng)系數(shù)不能為1,k≠1,即k≤1且k≠1.故選C.點(diǎn)睛:本題考查了一元二次方程根的判別式的應(yīng)用.切記不要忽略一元二次方程二次項(xiàng)系數(shù)不為零這一隱含條件.二、填空題(每題4分,共24分)13、【分析】作EC⊥x軸于C,EP⊥y軸于P,F(xiàn)D⊥x軸于D,F(xiàn)H⊥y軸于H,由題意可得點(diǎn)A,B的坐標(biāo)分別為(4,0),B(0,),利用待定系數(shù)法求出直線AB的解析式,再聯(lián)立反比例函數(shù)解析式求出點(diǎn),F(xiàn)的坐標(biāo).由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根據(jù)梯形面積公式計(jì)算即可.【詳解】解:如圖,作EP⊥y軸于P,EC⊥x軸于C,F(xiàn)D⊥x軸于D,F(xiàn)H⊥y軸于H,

由題意可得點(diǎn)A,B的坐標(biāo)分別為(4,0),B(0,),由點(diǎn)B的坐標(biāo)為(0,),設(shè)直線AB的解析式為y=kx+,將點(diǎn)A的坐標(biāo)代入得,0=4k+,解得k=-.∴直線AB的解析式為y=-x+.聯(lián)立一次函數(shù)與反比例函數(shù)解析式得,,解得或,即點(diǎn)E的坐標(biāo)為(1,2),點(diǎn)F的坐標(biāo)為(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,

∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案為:.【點(diǎn)睛】本題為一次函數(shù)與反比例函數(shù)的綜合題,考查了反比例函數(shù)k的幾何意義、一次函數(shù)解析式的求法,兩函數(shù)交點(diǎn)問題,掌握反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)的比例系數(shù)k的幾何意義,利用轉(zhuǎn)化法求面積是解決問題的關(guān)鍵.14、-3<x<1【解析】試題分析:根據(jù)拋物線的對稱軸為x=﹣1,一個交點(diǎn)為(1,0),可推出另一交點(diǎn)為(﹣3,0),結(jié)合圖象求出y>0時,x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對稱軸為x=﹣1,已知一個交點(diǎn)為(1,0),根據(jù)對稱性,則另一交點(diǎn)為(﹣3,0),所以y>0時,x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點(diǎn):二次函數(shù)的圖象.15、-1【分析】根據(jù)零指數(shù)冪及特殊角的三角函數(shù)值計(jì)算即可.【詳解】解:原式=1-4×=-1,故答案為:-1.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算、零指數(shù)冪、特殊角的三角函數(shù)值,屬于基礎(chǔ)題,解答本題的關(guān)鍵是熟練每部分的運(yùn)算法則.16、1:1【分析】證出DE、EF、DF是△ABC的中位線,由三角形中位線定理得出,證出△DEF∽△CBA,由相似三角形的面積比等于相似比的平方即可得出結(jié)果.【詳解】解:如圖所示:∵D、E、F分別AB、AC、BC的中點(diǎn),∴DE、EF、DF是△ABC的中位線,∴DE=BC,EF=AB,DF=AC,∴∴△DEF∽△CBA,∴△DEF的面積:△CBA的面積=()2=.故答案為1:1.考點(diǎn):三角形中位線定理.17、k≤5且k≠1.【解析】試題解析:∵一元二次方程(k﹣1)x2+4x+1=0有實(shí)數(shù)根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考點(diǎn):根的判別式.18、15°【分析】先根據(jù)旋轉(zhuǎn)的性質(zhì),求得∠BAB'的度數(shù),再根據(jù)∠BAC=35°,求得∠B′AC的度數(shù)即可.【詳解】∵將繞點(diǎn)順時針方向旋轉(zhuǎn)50°得到,∴,又∵,∴,故答案為:15°.【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),解題時注意:對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.三、解答題(共78分)19、【解析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出兩次抽取的牌上的數(shù)字都是偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩次抽取的牌上的數(shù)字都是偶數(shù)的結(jié)果數(shù)為2,所以兩次抽取的牌上的數(shù)字都是偶數(shù)的概率==.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.20、(1);(2)最大值為,點(diǎn)的坐標(biāo)為;(3)點(diǎn)的坐標(biāo)為,.【分析】(1)先設(shè)頂點(diǎn)式,再代入頂點(diǎn)坐標(biāo)得出,最后代入計(jì)算出二次項(xiàng)系數(shù)即得;(2)點(diǎn)的坐標(biāo)為,先求出B、C兩點(diǎn),再用含m的式子表示出的面積,進(jìn)而得出面積與m的二次函數(shù)關(guān)系,最后根據(jù)二次函數(shù)性質(zhì)即得最值;(3)分成Q點(diǎn)在對稱軸的左側(cè)和右側(cè)兩種情況,再分別根據(jù)和列出方程求解即得.【詳解】(1)設(shè)拋物線的解析式為.∵頂點(diǎn)坐標(biāo)為∴.∵將點(diǎn)代入,解得∴拋物線的解析式為.(2)如圖1,過點(diǎn)作軸,垂足為,交于點(diǎn).∵將代入,解得,∴點(diǎn)的坐標(biāo)為.∵將代入,解得∴點(diǎn)C的坐標(biāo)為設(shè)直線的解析式為∵點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為∴,解得∴直線的解析式為.設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為∴過點(diǎn)作于點(diǎn)∵∴故當(dāng)時,的面積有最大值,最大值為此時點(diǎn)的坐標(biāo)為(3)點(diǎn)的坐標(biāo)為,.分兩種情況進(jìn)行分析:①如圖2,過點(diǎn)作軸的平行線,分別交軸、對稱軸于點(diǎn),設(shè)點(diǎn)的坐標(biāo)為∵∴∴在和中∴∴∵,∴解得(舍去),∴點(diǎn)的坐標(biāo)為.②如圖3,過點(diǎn),作軸的平行線,過點(diǎn)作軸的平行線,分別交,于點(diǎn),.設(shè)點(diǎn)的坐標(biāo)∵由①知∴∵,∴解得,(舍去)∴點(diǎn)的坐標(biāo)為綜上所述:點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求解析式、二次函數(shù)最值的應(yīng)用、解一元二次方程、全等三角形的判定及性質(zhì),解題關(guān)鍵是熟知二次函數(shù)在實(shí)數(shù)范圍的最值在頂點(diǎn)取到,一線三垂直的全等模型,二次函數(shù)頂點(diǎn)式:.21、(1)AC=20,D(12,0);(2)見解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函數(shù)和勾股定理即可求出BC、AC的長度,從而得到A點(diǎn)坐標(biāo),由點(diǎn)D與點(diǎn)A關(guān)于y軸對稱,進(jìn)而得到D點(diǎn)的坐標(biāo);(2)欲證,只需證明△AEF與△DCE相似,只需要證明兩個對應(yīng)角相等即可.在△AEF與△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性質(zhì)證得∠AEF=∠DCE,問題即得解決;(3)當(dāng)△EFC為等腰三角形時,有三種情況,需要分類討論:①當(dāng)CE=EF時,此時△AEF與△DCE相似比為1,則有AE=CD,即可求出E點(diǎn)坐標(biāo);②當(dāng)EF=FC時,利用等腰三角形的性質(zhì)和解直角三角形的知識易求得CE,再利用(2)題的結(jié)論即可求出AE的長,進(jìn)而可求出E點(diǎn)坐標(biāo);③當(dāng)CE=CF時,可得E點(diǎn)與D點(diǎn)重合,這與已知條件矛盾,故此種情況不存在.【詳解】解:(1)∵四邊形ABCO為矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A點(diǎn)坐標(biāo)為(﹣12,0),∵點(diǎn)D與點(diǎn)A關(guān)于y軸對稱,∴D(12,0);(2)∵點(diǎn)D與點(diǎn)A關(guān)于y軸對稱,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴;(3)當(dāng)△EFC為等腰三角形時,有以下三種情況:①當(dāng)CE=EF時,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②當(dāng)EF=FC時,如圖1所示,過點(diǎn)F作FM⊥CE于M,則點(diǎn)M為CE中點(diǎn),∴CE=2ME=2EF?cos∠CEF=2EF?cos∠ACB=.∵△AEF∽△DCE,∴,即:,解得:AE=,∴OE=AE﹣OA=,∴E(,0).③當(dāng)CE=CF時,則有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此時F點(diǎn)與A點(diǎn)重合,E點(diǎn)與D點(diǎn)重合,這與已知條件矛盾.所以此種情況的點(diǎn)E不存在,綜上,當(dāng)△EFC為等腰三角形時,點(diǎn)E的坐標(biāo)是(8,0)或(,0).【點(diǎn)睛】本題綜合考查了矩形的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、相似三角形的判定和性質(zhì)、軸對稱的性質(zhì)、三角形的外角性質(zhì)以及解直角三角形等知識,熟練掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.難點(diǎn)在于第(3)問,當(dāng)△EFC為等腰三角形時,有三種情況,需要分類討論,注意不要漏解.22、(1)A種款式的服裝采購了65件,B種款式的服裝采購了1件;(2)A種款式的服裝最多能采購2件.【分析】(1)設(shè)A種款式的服裝采購了x件,則B種款式的服裝采購了(100﹣x)件,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合花費(fèi)了6600元,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;(2)設(shè)A種款式的服裝采購了m件,則B種款式的服裝采購了(60﹣m)件,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合總費(fèi)用不超過3300元,即可得出關(guān)于m的一元一次不等式,解之取其中最大的整數(shù)值即可得出結(jié)論.【詳解】解:(1)設(shè)A種款式的服裝采購了x件,則B種款式的服裝采購了(100﹣x)件,依題意,得:80x+40(100﹣x)=6600,解得:x=65,∴100﹣x=1.答:A種款式的服裝采購了65件,B種款式的服裝采購了1件.(2)設(shè)A種款式的服裝采購了m件,則B種款式的服裝采購了(60﹣m)件,依題意,得:80m+40(60﹣m)≤3300,解得:m≤2.∵m為正整數(shù),∴m的最大值為2.答:A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論