2023年江西省撫州市臨川區(qū)第四中學數(shù)學九上期末預測試題含解析_第1頁
2023年江西省撫州市臨川區(qū)第四中學數(shù)學九上期末預測試題含解析_第2頁
2023年江西省撫州市臨川區(qū)第四中學數(shù)學九上期末預測試題含解析_第3頁
2023年江西省撫州市臨川區(qū)第四中學數(shù)學九上期末預測試題含解析_第4頁
2023年江西省撫州市臨川區(qū)第四中學數(shù)學九上期末預測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年江西省撫州市臨川區(qū)第四中學數(shù)學九上期末預測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,線段與相交于點,連接,且,要使,應添加一個條件,不能證明的是()A. B. C. D.2.把拋物線向右平移3個單位,再向上平移2個單位,得到拋物線().A. B. C. D.3.如圖,已知二次函數(shù)的圖象與軸交于點(-1,0),與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點),對稱軸為直線,下列結(jié)論不正確的是()A. B. C. D.4.二次函數(shù)的圖象的頂點在坐標軸上,則m的值()A.0 B.2 C. D.0或5.關于反比例函數(shù)圖象,下列說法正確的是()A.必經(jīng)過點 B.兩個分支分布在第一、三象限C.兩個分支關于軸成軸對稱 D.兩個分支關于原點成中心對稱6.已知2x=3y(y≠0),則下面結(jié)論成立的是()A. B.C. D.7.如圖是由6個完全相同的小正方體組成的幾何體,其俯視圖為()A. B. C. D.8.已知二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)的圖象可能是()A. B.C. D.9.在學校組織的實踐活動中,小新同學用紙板制作了一個圓錐模型,它的底面半徑為1,母線長為1.則這個圓錐的側(cè)面積是()A.4π B.1π C.π D.2π10.如圖,、是的兩條弦,若,則的度數(shù)為()A. B. C. D.11.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,那么下列說法正確的是()A.a(chǎn)>0,b>0,c>0 B.a(chǎn)<0,b>0,c>0 C.a(chǎn)<0,b>0,c<0 D.a(chǎn)<0,b<0,c>012.某藥品經(jīng)過兩次降價,每瓶零售價由112元降為63元.已知兩次降價的百分率相同.要求每次降價的百分率,若設每次降價的百分率為x,則得到的方程為()A.112(1﹣x)2=63B.112(1+x)2=63C.112(1﹣x)=63D.112(1+x)=63二、填空題(每題4分,共24分)13.某數(shù)學興趣小組想測量一棵樹的高度,在陽光下,一名同學測得一根長為1m的竹竿的影長為0.5m,同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上,其中,落在墻壁上的影長為0.8m,落在地面上的影長為4.4m,則樹的高為_______m.14.如圖,在△ABC中,AB=AC=1,點D、E在直線BC上運動,設BD=x,CE=y(tǒng).如果∠BAC=30°,∠DAE=105°,則y與x之間的函數(shù)關系式為________________.15.拋物線在對稱軸左側(cè)的部分是上升的,那么的取值范圍是____________.16.如圖,是一個半徑為6cm,面積為12πcm2的扇形紙片,現(xiàn)需要一個半徑為R的圓形紙片,使兩張紙片剛好能組合成圓錐體,則R等于_____cm.17.是方程的解,則的值__________.18.如圖,ΔABP是由ΔACD按順時針方向旋轉(zhuǎn)某一角度得到的,若∠BAP=60°,則在這一旋轉(zhuǎn)過程中,旋轉(zhuǎn)中心是____________,旋轉(zhuǎn)角度為____________.三、解答題(共78分)19.(8分)一次函數(shù)分別與軸、軸交于點、.頂點為的拋物線經(jīng)過點.(1)求拋物線的解析式;(2)點為第一象限拋物線上一動點.設點的橫坐標為,的面積為.當為何值時,的值最大,并求的最大值;(3)在(2)的結(jié)論下,若點在軸上,為直角三角形,請直接寫出點的坐標.20.(8分)解方程21.(8分)如圖,直線y=x﹣3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=﹣x2+mx+n與x軸的另一個交點為A,頂點為P.(1)求3m+n的值;(2)在該拋物線的對稱軸上是否存在點Q,使以C,P,Q為頂點的三角形為等腰三角形?若存在,求出有符合條件的點Q的坐標;若不存在,請說明理由.(3)將該拋物線在x軸上方的部分沿x軸向下翻折,圖象的其余部分保持不變,翻折后的圖象與原圖象x軸下方的部分組成一個“M“形狀的新圖象,若直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點,求b的值.22.(10分)已知一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=的圖象相交于A、B兩點,坐標分別為(—2,4)、(4,—2).(1)求兩個函數(shù)的解析式;(2)求△AOB的面積;(3)直線AB上是否存在一點P(A除外),使△ABO與以B﹑P、O為頂點的三角形相似?若存在,直接寫出頂點P的坐標.23.(10分)用一段長為30m的籬笆圍成一個邊靠墻的矩形菜園,墻長為18m(1)若圍成的面積為72m2,球矩形的長與寬;(2)菜園的面積能否為120m2,為什么?24.(10分)在不透明的箱子中,裝有紅、白、黑各一個球,它們除了顏色之外,沒有其他區(qū)別.(1)隨機地從箱子里取出一個球,則取出紅球的概率是多少?(2)隨機地從箱子里取出1個球,然后放回,再搖勻取出第二個球,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求兩次取出相同顏色球的概率.25.(12分)如圖,在△ABC中,點D在BC邊上,BC=3CD,分別過點B,D作AD,AB的平行線,并交于點E,且ED交AC于點F,AD=3DF.(1)求證:△CFD∽△CAB;(2)求證:四邊形ABED為菱形;(3)若DF=,BC=9,求四邊形ABED的面積.26.如圖,△ABC的三個頂點和點O都在正方形網(wǎng)格的格點上,每個小正方形的邊長都為1.(1)將△ABC先向右平移4個單位,再向上平移2個單位得到△A1B1C1,請畫出△A1B1C1;(2)請畫出△A2B2C2,使△A2B2C2和△ABC關于點O成中心對稱.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)三角形全等的判定定理逐項判斷即可.【詳解】A、在和中,則,此項不符題意B、在和中,則,此項不符題意C、在和中,則,此項不符題意D、在和中,,但兩組相等的對應邊的夾角和未必相等,則不能證明,此項符合題意故選:D.【點睛】本題考查了三角形全等的判定定理,熟記各定理是解題關鍵.2、D【分析】直接根據(jù)平移規(guī)律(左加右減,上加下減)作答即可.【詳解】將拋物線y=x2+1向右平移1個單位,再向上平移2個單位后所得拋物線解析式為y=(x-1)2+1.

故選:D.【點睛】此題考查函數(shù)圖象的平移,解題關鍵在于熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式.3、D【分析】根據(jù)二次函數(shù)的圖象和性質(zhì)、各項系數(shù)結(jié)合圖象進行解答.【詳解】∵(-1,0),對稱軸為∴二次函數(shù)與x軸的另一個交點為將代入中,故A正確將代入中②①∴∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴∴∴,故B正確;∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴拋物線頂點縱坐標∵拋物線開口向上∴∴,故C正確∵二次函數(shù)與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點)∴將代入中①②∴∴,故D錯誤,符合題意故答案為:D.【點睛】本題主要考查了二次函數(shù)的圖象與函數(shù)解析式的關系,可以根據(jù)各項系數(shù)結(jié)合圖象進行解答.4、D【解析】試題解析:當圖象的頂點在x軸上時,∵二次函數(shù)的圖象的頂點在x軸上,∴二次函數(shù)的解析式為:∴m=±2.當圖象的頂點在y軸上時,m=0,故選D.5、D【分析】把(2,1)代入即可判斷A,根據(jù)反比例函數(shù)的性質(zhì)即可判斷B、C、D.【詳解】A.當x=2時,y=-1≠1,故不正確;B.∵-2<0,∴兩個分支分布在第二、四象限,故不正確;C.兩個分支不關于軸成軸對稱,關于原點成中心對稱,故不正確;D.兩個分支關于原點成中心對稱,正確;故選D.【點睛】本題考查了反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)(k是常數(shù),k≠0)的圖象是雙曲線,當k>0,反比例函數(shù)圖象的兩個分支在第一、三象限;當k<0,反比例函數(shù)圖象的兩個分支在第二、四象限.反比例函數(shù)圖象的兩個分支關于原點成中心對稱.6、A【解析】試題解析:A、兩邊都除以2y,得,故A符合題意;B、兩邊除以不同的整式,故B不符合題意;C、兩邊都除以2y,得,故C不符合題意;D、兩邊除以不同的整式,故D不符合題意;故選A.7、B【分析】根據(jù)從上面看到的圖形即為俯視圖進一步分析判斷即可.【詳解】從上面看第一排是三個小正方形,第二排右邊是一個小正方形,故選:B.【點睛】本題主要考查了三視圖的判斷,熟練掌握相關方法是解題關鍵.8、B【分析】觀察二次函數(shù)圖象,找出>0,>0,再結(jié)合反比例函數(shù)、一次函數(shù)圖象與系數(shù)的關系,即可得出結(jié)論.【詳解】觀察二次函數(shù)圖象,發(fā)現(xiàn):

拋物線的頂點坐標在第四象限,即,

∴,.

∵反比例函數(shù)中,

∴反比例函數(shù)圖象在第一、三象限;

∵一次函數(shù),,

∴一次函數(shù)的圖象過第一、二、三象限.

故選:B.【點睛】本題考查了反比例函數(shù)的圖象、一次函數(shù)的圖象以及二次函數(shù)的圖象,解題的關鍵是根據(jù)二次函數(shù)的圖象找出,.解決該題型題目時,熟記各函數(shù)圖象的性質(zhì)是解題的關鍵.9、B【分析】根據(jù)圓錐的側(cè)面積,代入數(shù)進行計算即可.【詳解】解:圓錐的側(cè)面積2π×1×1=1π.故選:B.【點睛】本題主要考查了圓錐的計算,掌握圓錐的計算是解題的關鍵.10、C【分析】根據(jù)同弧所對的圓周角是圓心角的一半即可求出結(jié)論.【詳解】解:∵∴∠BOC=2∠A=60°故選C.【點睛】此題考查的是圓周角定理,掌握同弧所對的圓周角是圓心角的一半是解決此題的關鍵.11、B【分析】利用拋物線開口方向確定a的符號,利用對稱軸方程可確定b的符號,利用拋物線與y軸的交點位置可確定c的符號.【詳解】∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側(cè),∴x=﹣>0,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,故選B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小:當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.12、A【解析】根據(jù)題意可得等量關系:原零售價×(1-百分比)(1-百分比)=降價后的售價,然后根據(jù)等量關系列出方程即可.【詳解】設每次降價的百分率為x,由題意得:112(1?x)2=63,故答案選:A.【點睛】本題考查的知識點是由實際問題抽象出一元二次方程,解題的關鍵是熟練的掌握由實際問題抽象出一元二次方程.二、填空題(每題4分,共24分)13、9.2【分析】由題意可知在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.經(jīng)過樹在教學樓上的影子的頂端作樹的垂線和經(jīng)過樹頂?shù)奶柟饩€以及樹所成三角形,與竹竿,影子光線形成的三角形相似,這樣就可求出垂足到樹的頂端的高度,再加上墻上的影高就是樹高.【詳解】解:設從墻上的影子的頂端到樹的頂端的垂直高度是x米.則有,解得x=1.1.樹高是1.1+0.1=9.2(米).故答案為:9.2.【點睛】本題考查相似三角形的應用,解題的關鍵是從復雜的數(shù)學問題中整理出三角形并利用相似三角形求解.14、【解析】∵∠BAC=30°,AB=AC,∴∠ACB=∠ABC=,∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°,∴∠ADB=∠CAE.∴△ADB∽△EAC,∴,即,∴.故答案為.15、【分析】利用二次函數(shù)的性質(zhì)得到拋物線開口向下,則a-1<0,然后解不等式即可.【詳解】∵拋物線y=(a-1)x1在對稱軸左側(cè)的部分是上升的,

∴拋物線開口向下,

∴a-1<0,解得a<1.

故答案為a<1.【點睛】此題考查二次函數(shù)圖象與系數(shù)的關系,解題關鍵在于掌握二次項系數(shù)a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.16、2.【解析】能組合成圓錐體,那么扇形的弧長等于圓形紙片的周長.應先利用扇形的面積=圓錐的弧長母線長,得到圓錐的弧長=2扇形的面積母線長,進而根據(jù)圓錐的底面半徑=圓錐的弧長求解.【詳解】圓錐的弧長,

圓錐的底面半徑,

故答案為2.【點睛】解決本題的難點是得到圓錐的弧長與扇形面積之間的關系,注意利用圓錐的弧長等于底面周長這個知識點.17、【分析】先根據(jù)是方程的解求出的值,再進行計算即可得到答案.【詳解】解:∵是方程的解,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了一元二次方程的解,解題時,逆用一元二次方程的定義易得出所求式子的值,在解題時要重視解題思路的逆向分析.18、,【分析】根據(jù)條件得出AD=AP,AC=AB,確定旋轉(zhuǎn)中心,根據(jù)條件得出∠DAP=∠CAB=90°,確定旋轉(zhuǎn)角度數(shù).【詳解】解:∵△ABP是由△ACD按順時針方向旋轉(zhuǎn)而得,∴△ABP≌△ACD,∴∠DAC=∠PAB=60°,AD=AP,AC=AB,∴∠DAP=∠CAB=90°,∴△ABP是△ACD以點A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°得到的.故答案為:A,90°【點睛】本題考查旋轉(zhuǎn)的性質(zhì),明確旋轉(zhuǎn)前后的圖形大小和形狀不變,正確確定對應角,對應邊是解答此題的關鍵.三、解答題(共78分)19、(1);(2)當時,的值最大,最大值為;(3)、、或【分析】(1)設拋物線的解析式為,代入點的坐標即可求解;(2)連接,可得點,根據(jù)一次函數(shù)得出點、的坐標,然后利用三角形面積公式得出的表達式,利用二次函數(shù)的表達式即可求解;(3)①當為直角邊時,過點和點做垂線交軸于點和點,過點的垂線交軸于點,得出,再利用等腰直角三角形和坐標即可求解;②當為斜邊時,設的中點為,以為圓心為直徑做圓于軸于點和點,過點作軸,先得出和的值,再求出的值即可求解.【詳解】解:(1)一次函數(shù)與軸交于點,則的坐標為.拋物線的頂點為,設拋物線解析式為.拋物線經(jīng)過點,..拋物線解析式為;(2)解法一:連接.點為第一象限拋物線上一動點.點的橫坐標為,.一次函數(shù)與軸交于點.則,的坐標為,.,,..當時,的值最大,最大值為;解法二:作軸,交于點.的坐標為,.點為第一象限拋物線上一動點.點的橫坐標為,,...當時,的值最大,最大值為;解法三:作軸,交于點.一次函數(shù)與軸交于點.則,點為第一象限拋物線上一動點.點的橫坐標為,.把代入,解得,..當時,的值最大,最大值為;解法四:構(gòu)造矩形.(或構(gòu)造梯形)一次函數(shù)與軸交于點.則,的坐標為,.點為第一象限拋物線上一動點.點的橫坐標為,設點的縱坐標為,,,,,,,..當時,的值最大,最大值為;(3)由(2)易得點的坐標為,①當為直角邊時,過點和點做垂線交軸于點和點,過點的垂線交軸于點,如下圖所示:由點和點的坐標可知:∴∴∴點的坐標為由題可知:∴∴點的坐標為;②當為斜邊時,設的中點為,以為圓心為直徑做圓于軸于點和點,過點作軸,如下圖所示:由點和點的坐標可得點的坐標是∴,∴∴點的坐標為,點的坐標為根據(jù)圓周角定理即可知道∴點和點符合要求∴綜上所述點的坐標為、、或.【點睛】本題主要考察了待定系數(shù)法求拋物線解析式、一次函數(shù)、動點問題等,利用數(shù)形結(jié)合思想是關鍵.20、,.【解析】分析:用配方法解一元二次方程即可.還可以用公式法或者因式分解法.詳解:方法一:移項,得,二次項系數(shù)化為1,得,,,由此可得,,.方法二:方程整理得:分解因式得:(x?1)(2x?1)=0,解得:,.點睛:考查解一元二次方程,常見的方法有:直接開方法,配方法,公式法和因式分解法,觀察題目選擇合適的方法.21、(1)9;(2)點Q的坐標為(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)b=﹣3或﹣.【分析】(1)求出B、C的坐標,將點B、C的坐標分別代入拋物線表達式,即可求解;(2)分CP=PQ、CP=CQ、CQ=PQ,分別求解即可;(3)分兩種情況,分別求解即可.【詳解】解:(1)直線y=x﹣3,令y=0,則x=3,令x=0,則y=﹣3,故點B、C的坐標分別為(3,0)、(0,﹣3),將點B、C的坐標分別代入拋物線表達式得:,解得:,則拋物線的表達式為:y=﹣x2+4x﹣3,則點A坐標為(1,0),頂點P的坐標為(2,1),3m+n=12﹣3=9;(2)①當CP=CQ時,C點縱坐標為PQ中點的縱坐標相同為﹣3,故此時Q點坐標為(2,﹣7);②當CP=PQ時,∵PC=,∴點Q的坐標為(2,1﹣)或(2,1+);③當CQ=PQ時,過該中點與CP垂直的直線方程為:y=﹣x﹣,當x=2時,y=﹣,即點Q的坐標為(2,﹣);故:點Q的坐標為(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)圖象翻折后的點P對應點P′的坐標為(2,﹣1),①在如圖所示的位置時,直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點,此時C、P′、B三點共線,b=﹣3;②當直線y=x+b與翻折后的圖象只有一個交點時,此時,直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點;即:x2﹣4x+3=x+b,△=52﹣4(3﹣b)=0,解得:b=﹣.即:b=﹣3或﹣.【點睛】本題考查的是二次函數(shù)綜合運用,涉及的知識點有待定系數(shù)法求二次函數(shù)解析式,一次函數(shù)的圖像與性質(zhì),勾股定理,等腰三角形的定義,二次函數(shù)的翻折變換及二次函數(shù)與一元二次方程的關系.難點在于(3),關鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關系,難度較大.本題也考查了分類討論及數(shù)形結(jié)合的數(shù)學思想.22、(1)y=-x+2,y=;(2)AOB的面積為6;(3)(,).【詳解】(1)將點(-2,4)、(4,-2)代入y1=ax+b,得,解得:,∴y=-x+2,將點(-2,4)代入y2=,得k=-8,∴y=;(2)在y=-x+2中,當y=0時,x=2,所以一次函數(shù)與x軸交點是(2,0),故△AOB的面積為=;(3)∵OA=OB=,∴△OAB是等腰三角形,∵△ABO與△BPO相似,∴△BPO也是等腰三角形,故只有一種情況,即P在OB的垂直平分線上,設P(x,-x+2)則,解得:,∴頂點P的坐標為(,).23、(1)矩形的長為12米,寬為6米;(2)面積不能為120平方米,理由見解析【分析】(1)設垂直于墻的一邊長為x米,則矩形的另一邊長為(30﹣2x)米,根據(jù)面積為72米2列出方程,求解即可;(2)根據(jù)題意列出方程,用根的判別式判斷方程根的情況即可.【詳解】解:(1)設垂直于墻的一邊長為x米,則x(30﹣2x)=72,解方程得:x1=3,x2=12.當x=3時,長=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的長為12米,寬為6米;(2)假設面積可以為120平方米,則x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程無實數(shù)解,故面積不能為120平方米.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據(jù)題意列出方程求解.24、(1);(2)【分析】(1)已知由在一個不透明的箱子里,裝有紅、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別,所以可利用概率公式求解即可;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次取出相同顏色球的情況,再利用概率公式即可求得答案.【詳解】解:(1)∵在一個不透明的箱子里,裝有紅、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別,∴隨機地從箱子里取出1個球,則取出紅球的概率是;(2)畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次取出相同顏色球的有3種情況,∴兩次取出相同顏色球的概率為:.考點:用列表法或樹狀圖法求概率.25、(1)見解析;(2)見解析;(3)四邊形ABED的面積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論