福建省泉州市晉江四校2023-2024學(xué)年高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
福建省泉州市晉江四校2023-2024學(xué)年高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
福建省泉州市晉江四校2023-2024學(xué)年高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
福建省泉州市晉江四校2023-2024學(xué)年高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
福建省泉州市晉江四校2023-2024學(xué)年高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省泉州市晉江四校2023-2024學(xué)年高三上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則的真子集個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是()A. B. C. D.3.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件4.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.5.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長(zhǎng)交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.6.若直線與圓相交所得弦長(zhǎng)為,則()A.1 B.2 C. D.37.已知非零向量,滿足,,則與的夾角為()A. B. C. D.8.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺9.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知命題,那么為()A. B.C. D.11.設(shè)全集,集合,,則集合()A. B. C. D.12.下圖是民航部門統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價(jià)格最高B.天津的往返機(jī)票平均價(jià)格變化最大C.上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)D.相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加二、填空題:本題共4小題,每小題5分,共20分。13.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說(shuō)“是乙或丙獲獎(jiǎng).”乙說(shuō):“甲、丙都未獲獎(jiǎng).”丙說(shuō):“我獲獎(jiǎng)了”.丁說(shuō):“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是__________.14.若奇函數(shù)滿足,為R上的單調(diào)函數(shù),對(duì)任意實(shí)數(shù)都有,當(dāng)時(shí),,則________.15.已知橢圓與雙曲線有相同的焦點(diǎn)、,其中為左焦點(diǎn).點(diǎn)為兩曲線在第一象限的交點(diǎn),、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為_(kāi)_______.16.已知集合,其中,.且,則集合中所有元素的和為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的右頂點(diǎn)為,為上頂點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn).(1)若,求直線與軸的交點(diǎn)坐標(biāo);(2)設(shè)為橢圓的右焦點(diǎn),過(guò)點(diǎn)與軸垂直的直線為,的中點(diǎn)為,過(guò)點(diǎn)作直線的垂線,垂足為,求證:直線與直線的交點(diǎn)在橢圓上.18.(12分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為.(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程及的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到距離的取值范圍.20.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.21.(12分)在中,.(Ⅰ)求角的大??;(Ⅱ)若,,求的值.22.(10分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

求出的元素,再確定其真子集個(gè)數(shù).【詳解】由,解得或,∴中有兩個(gè)元素,因此它的真子集有3個(gè).故選:C.【點(diǎn)睛】本題考查集合的子集個(gè)數(shù)問(wèn)題,解題時(shí)可先確定交集中集合的元素個(gè)數(shù),解題關(guān)鍵是對(duì)集合元素的認(rèn)識(shí),本題中集合都是曲線上的點(diǎn)集.2、C【解析】

利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).3、C【解析】

根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.4、D【解析】

易知單調(diào)遞增,由可得唯一零點(diǎn),通過(guò)已知可求得,則問(wèn)題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡(jiǎn)可得,借助對(duì)號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問(wèn)題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對(duì)勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)?,?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,考查了方程有解問(wèn)題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對(duì)勾函數(shù)”求參數(shù)取值范圍問(wèn)題,難度較難.5、B【解析】

設(shè),則,,因?yàn)椋裕?,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.6、A【解析】

將圓的方程化簡(jiǎn)成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因?yàn)橹本€與圓相交所得弦長(zhǎng)為,所以直線過(guò)圓心,得,即.故選:A【點(diǎn)睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.7、B【解析】

由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.8、A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.9、A【解析】

化簡(jiǎn)復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對(duì)應(yīng)點(diǎn)的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為位于第一象限故選:A.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.10、B【解析】

利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點(diǎn)睛】本題主要考查特稱命題的否定,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.11、C【解析】∵集合,,∴點(diǎn)睛:本題是道易錯(cuò)題,看清所問(wèn)問(wèn)題求并集而不是交集.12、D【解析】

根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對(duì)選項(xiàng)逐一分析,由此得出敘述不正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價(jià)格最高,所以A選項(xiàng)敘述正確.對(duì)于B選項(xiàng),根據(jù)折線圖可知天津的往返機(jī)票平均價(jià)格變化最大,所以B選項(xiàng)敘述正確.對(duì)于C選項(xiàng),根據(jù)條形圖可知上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng),所以C選項(xiàng)敘述正確.對(duì)于D選項(xiàng),根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個(gè)城市的往返機(jī)票平均價(jià)格在增加,故D選項(xiàng)敘述錯(cuò)誤.故選:D【點(diǎn)睛】本小題主要考查根據(jù)條形圖和折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、丙【解析】若甲獲獎(jiǎng),則甲、乙、丙、丁說(shuō)的都是錯(cuò)的,同理可推知乙、丙、丁獲獎(jiǎng)的情況,可知獲獎(jiǎng)的歌手是丙.考點(diǎn):反證法在推理中的應(yīng)用.14、【解析】

根據(jù)可得,函數(shù)是以為周期的函數(shù),令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時(shí),,所以時(shí),;由,所以,所以函數(shù)是以為周期的函數(shù),,又函數(shù)為奇函數(shù),所以.故答案為:【點(diǎn)睛】本題主要考查了換元法求函數(shù)解析式、函數(shù)的奇偶性、周期性的應(yīng)用,屬于中檔題.15、【解析】

設(shè),由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導(dǎo)數(shù)法求的范圍.【詳解】設(shè),由橢圓的定義得,由雙曲線的定義得,所以,因?yàn)槭且詾榈走叺牡妊切危?,即,因?yàn)?,所以,因?yàn)?,所以,所以,即,而,因?yàn)椋栽谏线f增,所以.故答案為:【點(diǎn)睛】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.16、2889【解析】

先計(jì)算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當(dāng)時(shí),集合中最小數(shù);當(dāng)時(shí),得到集合中最大的數(shù);故答案為:2889【點(diǎn)睛】本題考查了數(shù)列與集合綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)見(jiàn)解析【解析】

(1)直接求出直線方程,與橢圓方程聯(lián)立求出點(diǎn)坐標(biāo),從而可得直線方程,得其與軸交點(diǎn)坐標(biāo);(2)設(shè),則,求出直線和的方程,從而求得兩直線的交點(diǎn)坐標(biāo),證明此交點(diǎn)在橢圓上,即此點(diǎn)坐標(biāo)適合橢圓方程.代入驗(yàn)證即可.注意分和說(shuō)明.【詳解】解:本題考查直線與橢圓的位置關(guān)系的綜合,(1)由題知,,則.因?yàn)椋?,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點(diǎn)坐標(biāo)為.(2)證明:因?yàn)椋?,所以.設(shè)點(diǎn),則.設(shè)當(dāng)時(shí),設(shè),則,此時(shí)直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點(diǎn)為,顯然在橢圓上.同理當(dāng)時(shí),交點(diǎn)也在橢圓上.當(dāng)時(shí),可設(shè)直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡(jiǎn)并解得.將代入中,化簡(jiǎn)得.所以兩直線的交點(diǎn)為.因?yàn)椋忠驗(yàn)?,所以,則,所以點(diǎn)在橢圓上.綜上所述,直線與直線的交點(diǎn)在橢圓上.【點(diǎn)睛】本題考查直線與橢圓相交問(wèn)題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點(diǎn)坐標(biāo),代入曲線方程驗(yàn)證點(diǎn)在曲線.本題考查了學(xué)生的運(yùn)算求解能力.18、(1)證明見(jiàn)解析(2)【解析】

(1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個(gè)平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點(diǎn),連接.∵,∴為的中點(diǎn).又為的中點(diǎn),∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,,,,,,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的證明和空間坐標(biāo)法解決二面角的問(wèn)題,意在考查空間想象能力,推理證明和計(jì)算能力,屬于中檔題型,證明線面平行,或證明面面平行時(shí),關(guān)鍵是證明線線平行,所以做輔助線或證明時(shí),需考慮構(gòu)造中位線或平行四邊形,這些都是證明線線平行的常方法.19、(1),.(2)【解析】

(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:,即可求得答案;(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為,根據(jù)點(diǎn)到直線距離公式,即可求得答案.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:的直角坐標(biāo)方程為.(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為圓心到的距離為,點(diǎn)到的距離的取值范圍是.【點(diǎn)睛】本題解題關(guān)鍵是掌握極坐標(biāo)化直角坐標(biāo)的公式和點(diǎn)到直線距離公式,考查了分析能力和計(jì)算能力,屬于中檔題.20、(1).(2)見(jiàn)解析【解析】

(1)由絕對(duì)值三解不等式可得,所以當(dāng)時(shí),,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當(dāng)時(shí),,解得.(2)∵,∴,∴,當(dāng)且僅當(dāng),即,時(shí),等號(hào)成立.∴.【點(diǎn)睛】本題主要考查絕對(duì)值三角不等式及基本不等式的簡(jiǎn)單應(yīng)用,屬于中檔題.21、(1);(2).【解析】試題分析:(1)由正弦定

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論