版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
函數(shù)極限的運(yùn)算規(guī)則前面已經(jīng)學(xué)習(xí)了數(shù)列極限的運(yùn)算規(guī)則,我們知道數(shù)列可作為一類特殊的函數(shù),故函數(shù)極限的運(yùn)算規(guī)則與數(shù)列極限的運(yùn)算規(guī)則相似。⑴、函數(shù)極限的運(yùn)算規(guī)則在求函數(shù)的極限時(shí),利用上述規(guī)則就可把一個(gè)復(fù)雜的函數(shù)化為若干個(gè)簡(jiǎn)單的函數(shù)來求極限。此題如果像上題那樣求解,則會(huì)發(fā)現(xiàn)此函數(shù)的極限不存在.我們通過觀察可以發(fā)現(xiàn)此分式的分子和分母都沒有極限,像這種情況怎么辦呢?下面我們把它解出來。注:通過此例題我們可以發(fā)現(xiàn):當(dāng)分式的分子和分母都沒有極限時(shí)就不能運(yùn)用商的極限的運(yùn)算規(guī)則了,應(yīng)先把分式的分子分母轉(zhuǎn)化為存在極限的情形,然后運(yùn)用規(guī)則求之。歡迎您閱讀并下載本文檔,本文檔來源于互聯(lián)網(wǎng),如有侵權(quán)請(qǐng)聯(lián)系刪除!我們將竭誠(chéng)為您提供優(yōu)質(zhì)的文檔!函數(shù)極限的存在準(zhǔn)則學(xué)習(xí)函數(shù)極限的存在準(zhǔn)則之前,我們先來學(xué)習(xí)一下左、右的概念。我們先來看一個(gè)例子:例:符號(hào)函數(shù)為對(duì)于這個(gè)分段函數(shù),x從左趨于0和從右趨于0時(shí)函數(shù)極限是不相同的.為此我們定義了左、右極限的概念。定義:如果x僅從左側(cè)(x<x0)趨近x0時(shí),函數(shù)與常量A無限接近,則稱A為函數(shù)當(dāng)時(shí)的左極限.記:如果x僅從右側(cè)(x>x0)趨近x0時(shí),函數(shù)與常量A無限接近,則稱A為函數(shù)當(dāng)時(shí)的右極限.記:注:只有當(dāng)x→x0時(shí),函數(shù)的左、右極限存在且相等,方稱在x→x0時(shí)有極限函數(shù)極限的存在準(zhǔn)則準(zhǔn)則一:對(duì)于點(diǎn)x0的某一鄰域內(nèi)的一切x,x0點(diǎn)本身可以除外(或絕對(duì)值大于某一正數(shù)的一切x)有≤≤,且,那末存在,且等于A注:此準(zhǔn)則也就是夾逼準(zhǔn)則.準(zhǔn)則二:?jiǎn)握{(diào)有界的函數(shù)必有極限.注:有極限的函數(shù)不一定單調(diào)有界兩個(gè)重要的極限一:注:在此我們對(duì)這兩個(gè)重要極限不加以證明.注:我們要牢記這兩個(gè)重要極限,在今后的解題中會(huì)經(jīng)常用到它們.例題:求解答:令,則x=-2t,因?yàn)閤→∞,故t→∞,則注:解此類型的題時(shí),一定要注意代換后的變量的趨向情況,象x→∞歡迎您閱讀并下載本文檔,本文檔來源于互聯(lián)網(wǎng),如有侵權(quán)請(qǐng)聯(lián)系刪除!我們將竭誠(chéng)為您提供優(yōu)質(zhì)的文檔!無窮大量和無窮小量無窮大量我們先來看一個(gè)例子:已知函數(shù),當(dāng)x→0時(shí),可知,我們把這種情況稱為趨向無窮大。為此我們可定義如下:設(shè)有函數(shù)y=,在x=x0的去心鄰域內(nèi)有定義,對(duì)于任意給定的正數(shù)N(一個(gè)任意大的數(shù)),總可找到正數(shù)δ,當(dāng)時(shí),成立,則稱函數(shù)當(dāng)時(shí)為無窮大量。記為:(表示為無窮大量,實(shí)際它是沒有極限的)同樣我們可以給出當(dāng)x→∞時(shí),無限趨大的定義:設(shè)有函數(shù)y=,當(dāng)x充分大時(shí)有定義,對(duì)于任意給定的正數(shù)N(一個(gè)任意大的數(shù)),總可以找到正數(shù)M,當(dāng)時(shí),成立,則稱函數(shù)當(dāng)x→∞時(shí)是無窮大量,記為:無窮小量以零為極限的變量稱為無窮小量。定義:設(shè)有函數(shù),對(duì)于任意給定的正數(shù)ε(不論它多么小),總存在正數(shù)δ(或正數(shù)M),使得對(duì)于適合不等式(或)的一切x,所對(duì)應(yīng)的函數(shù)值滿足不等式,則稱函數(shù)當(dāng)(或x→∞)時(shí)為無窮小量.注意:無窮大量與無窮小量都是一個(gè)變化不定的量,不是常量,只有0可作為無窮小量的唯一常量。無窮大量與無窮小量的區(qū)別是:前者無界,后者有界,前者發(fā)散,后者收
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年海上貨物運(yùn)輸合同相關(guān)介紹
- 危險(xiǎn)品貨物運(yùn)輸賠償合同范本1
- 建筑材料供應(yīng)合同書
- 軟件產(chǎn)品協(xié)議合同書
- 裝修合同范本精簡(jiǎn)版
- 工程材料采購(gòu)合同
- 物流公司海運(yùn)合同范本
- 天貓店鋪代運(yùn)營(yíng)合同
- 茶園租賃合同
- 酒店采購(gòu)合同模板
- 危險(xiǎn)源辨識(shí)及分級(jí)管控管理制度
- GB/T 19752-2024混合動(dòng)力電動(dòng)汽車動(dòng)力性能試驗(yàn)方法
- 和員工簽股權(quán)合同范本
- 07FD02 防空地下室電氣設(shè)備安裝
- 《工程倫理》題集
- 江蘇2024年江蘇省新聞出版學(xué)校招聘人員筆試歷年典型考題及考點(diǎn)附答案解析
- 四川省成都市2023-2024學(xué)年高二歷史上學(xué)期期末聯(lián)考試題
- 河北省2024屆高三大數(shù)據(jù)應(yīng)用調(diào)研聯(lián)合測(cè)評(píng)(Ⅵ)英語試題含答案
- 成人手術(shù)后疼痛評(píng)估與護(hù)理-中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)(2023)課件
- 《金屬基增容導(dǎo)線技術(shù)條件+第2部分:鋁包殷鋼芯耐熱鋁合金絞線》
- 園藝植物栽培學(xué)智慧樹知到期末考試答案章節(jié)答案2024年浙江農(nóng)林大學(xué)
評(píng)論
0/150
提交評(píng)論