![數(shù)據(jù)挖掘之異常檢測_第1頁](http://file4.renrendoc.com/view10/M02/2C/14/wKhkGWWZYFGAN2ctAAH6j23keB8768.jpg)
![數(shù)據(jù)挖掘之異常檢測_第2頁](http://file4.renrendoc.com/view10/M02/2C/14/wKhkGWWZYFGAN2ctAAH6j23keB87682.jpg)
![數(shù)據(jù)挖掘之異常檢測_第3頁](http://file4.renrendoc.com/view10/M02/2C/14/wKhkGWWZYFGAN2ctAAH6j23keB87683.jpg)
![數(shù)據(jù)挖掘之異常檢測_第4頁](http://file4.renrendoc.com/view10/M02/2C/14/wKhkGWWZYFGAN2ctAAH6j23keB87684.jpg)
![數(shù)據(jù)挖掘之異常檢測_第5頁](http://file4.renrendoc.com/view10/M02/2C/14/wKhkGWWZYFGAN2ctAAH6j23keB87685.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
AnomalyDetection:AintroductionSourceofslides: TutorialAtAmericanStatisticalAssociation(ASA2008)
JiaweiHan-datamining:conceptsandtechniques
TutorialattheEuropeanConferenceonPrinciplesandPracticeofKnowledge DiscoveryinDatabasesSpeaker:
WentaoLiOutlineDefinitionApplicationMethodsLimitedtime,SoIjustdrawthepictureofanomalydetection,formoredetail,pleaseturntothepaperforhelp.WhatareAnomalies?Anomalyisapatterninthedatathatdoesnotconformtotheexpected
behaviorAnomalyisAdataobjectthatdeviatessignificantlyfromthenormalobjectsasifitweregeneratedbyadifferentmechanismAlsoreferredtoasoutliers,exceptions,peculiarities,surprises,etc.Anomaliestranslatetosignificant(oftencritical)reallifeentitiesCyberintrusionsCreditcardfraudFaultsinmechanicalsystemsRelatedproblemsOutliersaredifferentfromthenoisedataNoiseisrandomerrororvarianceinameasuredvariableNoiseshouldberemovedbeforeoutlierdetectionOutliersareinteresting:ItviolatesthemechanismthatgeneratesthenormaldataOutlierdetectionvs.noveltydetection:earlystage,outlier;butlatermergedintothemodelKeyChallengesDefiningarepresentativenormalregionischallengingTheboundarybetweennormalandoutlyingbehaviorisoftennotpreciseAvailabilityoflabeleddatafortraining/validationTheexactnotionofanoutlierisdifferentfordifferentapplicationdomainsDatamightcontainnoiseNormalbehaviorkeepsevolvingAppropriateselectionofrelevantfeaturesMapRelatedareas(theory)Application(practice)ProblemformulationDetectioneffect+AspectsofAnomalyDetectionProblemNatureofinputdataWhatisthecharacteristicofinputdataAvailabilityofsupervisionNumberoflabelTypeofanomaly:point,contextual,structuralTypeofanomalyOutputofanomalydetectionScorevslabelEvaluationofanomalydetectiontechniquesWhatkindofdetectionisgoodInputDataMostcommonformofdatahandledbyanomalydetectiontechniquesisRecordDataUnivariateMultivariateInputDataMostcommonformofdatahandledbyanomalydetectiontechniquesisRecordDataUnivariateMultivariateInputData–NatureofAttributesNatureofattributesBinaryCategoricalContinuousHybridcategoricalcontinuouscontinuouscategoricalbinaryInputData–ComplexDataTypesRelationshipamongdatainstancesSequentialTemporalSpatialSpatio-temporalGraphDataLabelsSupervisedAnomalyDetectionLabelsavailableforbothnormaldataandanomaliesSemi-supervisedAnomalyDetectionLabelsavailableonlyfornormaldataUnsupervisedAnomalyDetectionNolabelsassumedBasedontheassumptionthatanomaliesareveryrarecomparedtonormaldataPayattention:heresomematerialsgivedifferentdescriptions,andwetreatadoptthedefinitionherethoughitisabitambiguouswiththetraditionaldefinitionalTypeofAnomalies*PointAnomaliesContextualAnomaliesCollectiveAnomaliesPointAnomaliesAnindividualdatainstanceisanomalousw.r.t.thedataXYN1N2o1o2O3ContextualAnomaliesAnindividualdatainstanceisanomalouswithinacontextRequiresanotionofcontextAlsoreferredtoasconditionalanomalies*Dangerous+theftcondition=theftMoneyconsumer:thepoorandtherich*XiuyaoSong,MingxiWu,ChristopherJermaine,SanjayRanka,ConditionalAnomalyDetection,IEEETransactionsonDataandKnowledgeEngineering,2006.NormalAnomalyCollectiveAnomaliesAcollectionofrelateddatainstancesisanomalousRequiresarelationshipamongdatainstancesSequentialDataSpatialDataGraphDataTheindividualinstanceswithinacollectiveanomalyarenotanomalousbythemselvesAnomalousSubsequenceOutputofAnomalyDetectionLabelEachtestinstanceisgivenanormaloranomalylabelThisisespeciallytrueofclassification-basedapproachesScoreEachtestinstanceisassignedananomalyscoreAllowstheoutputtoberankedRequiresanadditionalthresholdparameterEvaluationofAnomalyDetection–F-valueAccuracyisnotsufficientmetricforevaluationExample:networktrafficdatasetwith99.9%ofnormaldataand0.1%ofintrusionsTrivialclassifierthatlabelseverythingwiththenormalclasscanachieve99.9%accuracy!!!!!anomalyclass – Cnormalclass –NCFocusonbothrecallandprecisionRecall(R) = TP/(TP+FN)?truepredictedanomaly/allanomalyPrecision(P) = TP/(TP+FP)?truepredictedanomaly/allpredictedF–measure = 2*R*P/(R+P)=EvaluationofOutlierDetection–ROC&AUCStandardmeasuresforevaluatinganomalydetectionproblems:Recall(Detectionrate)-ratiobetweenthenumberofcorrectlydetectedanomaliesandthetotalnumberofanomaliesFalsealarm(falsepositive)
rate–ratio
betweenthenumberofdatarecords
fromnormalclassthataremisclassified
asanomaliesandthetotalnumberof
datarecordsfromnormalclassROCCurveisatrade-offbetween
detectionrateandfalsealarmrateAreaundertheROCcurve(AUC)is
computedusingatrapezoidruleThebest:|_theworest:_|anomalyclass – Cnormalclass –NCAUCIdealROCcurveApplicationsofAnomalyDetectionNetworkintrusiondetectionInsurance/CreditcardfrauddetectionHealthcareInformatics/MedicaldiagnosticsIndustrialDamageDetectionImageProcessing/VideosurveillanceNovelTopicDetectioninTextMining…IntrusionDetectionIntrusionDetection:Processofmonitoringtheeventsoccurringinacomputersystem(inner)ornetwork
(outer)andanalyzingthemforintrusionsIntrusionsaredefinedasattemptstobypassthesecuritymechanismsofacomputerornetwork?ChallengesTraditionalsignature-basedintrusiondetection
systemsarebasedonsignaturesofknown
attacksandcannotdetectemergingcyberthreatsSubstantiallatencyindeploymentofnewly
createdsignaturesacrossthecomputersystemAnomalydetectioncanalleviatethese
limitationsFraud
DetectionFrauddetectionreferstodetectionofcriminalactivitiesoccurringincommercialorganizationsMalicioususersmightbetheactualcustomersoftheorganizationormightbeposingasacustomer(alsoknownasidentitytheft).TypesoffraudCreditcardfraudInsuranceclaimfraudMobile/cellphonefraudInsidertradingChallengesFastandaccuratereal-timedetectionMisclassificationcostisveryhighHealthcareInformaticsDetectanomalouspatientrecordsIndicatediseaseoutbreaks,instrumentationerrors,etc.KeyChallengesOnlynormallabelsavailableMisclassificationcostisveryhighDatacanbecomplex:spatio-temporalIndustrialDamageDetectionIndustrialdamagedetectionreferstodetectionofdifferentfaultsandfailuresincomplexindustrialsystems,structuraldamages,intrusionsinelectronicsecuritysystems,abnormalenergyconsumption,etc.Example:AircraftSafetyAnomalousAircraft(Engine)/FleetUsageAnomaliesinenginecombustiondataTotalaircrafthealthandusagemanagementKeyChallengesDataisextremelyhuge,noisyandunlabelledMostofapplicationsexhibittemporalbehaviorDetectinganomalouseventstypicallyrequireimmediateinterventionImageProcessingDetectingoutliersinaimageorvideomonitoredovertimeDetectinganomalousregionswithinanimageUsedinmammographyimageanalysisvideosurveillancesatelliteimageanalysisKeyChallengesDetectingcollectiveanomaliesDatasetsareverylargeAnomalyTaxonomy*AnomalyDetectionContextualAnomalyDetectionCollectiveAnomalyDetectionOnlineAnomalyDetectionDistributedAnomalyDetectionPointAnomalyDetectionClassificationBasedRuleBasedNeuralNetworksBasedSVMBasedNearestNeighborBasedDensityBasedDistanceBasedStatisticalParametricNon-parametricClusteringBasedOthersInformationTheoryBasedSpectralDecompositionBasedVisualizationBasedStatisticalApproachesStatisticalapproachesassumethattheobjectsinadatasetaregeneratedbyastochasticprocess(agenerativemodel)Idea:learnagenerativemodelfittingthegivendataset,andthenidentifytheobjectsinlowprobabilityregionsofthemodelasoutliersMethodsaredividedintotwocategories:parametricvs.non-parametric
ParametricmethodAssumesthatthenormaldataisgeneratedbyaparametricdistributionwithparameterθTheprobabilitydensityfunctionoftheparametricdistributionf(x,θ)givestheprobabilitythatobjectxisgeneratedbythedistributionThesmallerthisvalue,themorelikelyxisanoutlierNon-parametricmethodNotassumeana-prioristatisticalmodelanddeterminethemodelfromtheinputdataNotcompletelyparameterfreebutconsiderthenumberandnatureoftheparametersareflexibleandnotfixedinadvanceExamples:histogramandkerneldensityestimationParametricMethodsI:DetectionUnivariateOutliersBasedonNormalDistributionUnivariatedata:AdatasetinvolvingonlyoneattributeorvariableOftenassumethatdataaregeneratedfromanormaldistribution,learntheparametersfromtheinputdata,andidentifythepointswithlowprobabilityasoutliersEx:Avg.temp.:{24.0,28.9,28.9,29.0,29.1,29.1,29.2,29.2,29.3,29.4}UsethemaximumlikelihoodmethodtoestimateμandσTakingderivativeswithrespecttoμandσ2,wederivethefollowingmaximumlikelihoodestimatesFortheabovedatawithn=10,wehaveThen(24–28.61)/1.51=–3.04<–3,24isanoutliersinceParametricMethodsI:TheGrubb’sTestUnivariateoutlierdetection:TheGrubb'stest(maximumnormedresidualtest)─anotherstatisticalmethodundernormaldistributionForeachobjectxinadataset,computeitsz-score:xisanoutlierifwhereisthevaluetakenbyat-distributionatasignificancelevelofα/(2N),andNisthe#ofobjectsinthedatasetParametricMethodsII:DetectionofMultivariateOutliersMultivariatedata:AdatasetinvolvingtwoormoreattributesorvariablesTransformthemultivariateoutlierdetectiontaskintoaunivariateoutlierdetectionproblemMethod1.ComputeMahalaobisdistanceLetōbethemeanvectorforamultivariatedataset.MahalaobisdistanceforanobjectotoōisMDist(o,ō)=(o–ō)TS–1(o–ō)whereSisthecovariancematrixUsetheGrubb'stestonthismeasuretodetectoutliersMethod2.Useχ2–statistic:whereEiisthemeanofthei-dimensionamongallobjects,andnisthedimensionalityIfχ2–statisticislarge,thenobjectoiisanoutlierParametricMethodsIII:UsingMixtureofParametricDistributionsAssumingdatageneratedbyanormaldistributioncouldbesometimesoverlysimplifiedExample(rightfigure):TheobjectsbetweenthetwoclusterscannotbecapturedasoutlierssincetheyareclosetotheestimatedmeanToovercomethisproblem,assumethenormaldataisgeneratedbytwonormaldistributions.Foranyobjectointhedataset,theprobabilitythatoisgeneratedbythemixtureofthetwodistributionsisgivenbywherefθ1andfθ2aretheprobabilitydensityfunctionsofθ1andθ2
ThenuseEMalgorithmtolearntheparametersμ1,σ1,μ2,σ2fromdataAnobjectoisanoutlierifitdoesnotbelongtoanyclusterNon-ParametricMethods:DetectionUsingHistogramThemodelofnormaldataislearnedfromtheinputdatawithoutanyaprioristructure.Oftenmakesfewerassumptionsaboutthedata,andthuscanbeapplicableinmorescenariosOutlierdetectionusinghistogram:FigureshowsthehistogramofpurchaseamountsintransactionsAtransactionintheamountof$7,500isanoutlier,sinceonly0.2%transactionshaveanamounthigherthan$5,000Problem:HardtochooseanappropriatebinsizeforhistogramToosmallbinsize→normalobjectsinempty/rarebins,falsepositiveToobigbinsize→outliersinsomefrequentbins,falsenegativeSolution:Adoptkerneldensityestimationtoestimatetheprobabilitydensitydistributionofthedata.Iftheestimateddensityfunctionishigh,theobjectislikelynormal.Otherwise,itislikelyanoutlier.Proximity-BasedApproaches:Distance-Basedvs.Density-BasedOutlierDetectionIntuition:ObjectsthatarefarawayfromtheothersareoutliersAssumptionofproximity-basedapproach:TheproximityofanoutlierdeviatessignificantlyfromthatofmostoftheothersinthedatasetTwotypesofproximity-basedoutlierdetectionmethodsDistance-basedoutlierdetection:AnobjectoisanoutlierifitsneighborhooddoesnothaveenoughotherpointsDensity-basedoutlierdetection:Anobjectoisanoutlierifitsdensityisrelativelymuchlowerthanthatofitsneighbors34Distance-BasedOutlierDetectionForeachobjecto,examinethe#ofotherobjectsinther-neighborhoodofo,whererisauser-specifieddistancethresholdAnobjectoisanoutlierifmost(takingπasafractionthreshold)oftheobjectsinDarefarawayfromo,i.e.,notinther-neighborhoodofoAnobjectoisaDB(r,π)outlierifEquivalently,onecancheckthedistancebetweenoanditsk-thnearestneighborok,where.oisanoutlierifdist(o,ok)>rEfficientcomputation:NestedloopalgorithmForanyobjectoi,calculateitsdistancefromotherobjects,andcountthe#ofotherobjectsinther-neighborhood.Ifπ?notherobjectsarewithinrdistance,terminatetheinnerloopOtherwise,oiisaDB(r,π)outlierEfficiency:ActuallyCPUtimeisnotO(n2)butlineartothedatasetsizesinceformostnon-outlierobjects,theinnerloopterminatesearly35Density-BasedOutlierDetectionLocaloutliers:Outlierscomparingtotheirlocalneighborhoods,insteadoftheglobaldatadistributionInFig.,o1ando2arelocaloutlierstoC1,o3isaglobaloutlier,buto4isnotanoutlier.However,proximity-basedclusteringcannotfindo1ando2areoutlier(e.g.,comparingwithO4).36Intuition(density-basedoutlierdetection):ThedensityaroundanoutlierobjectissignificantlydifferentfromthedensityarounditsneighborsMethod:Usetherelativedensityofanobjectagainstitsneighborsastheindicatorofthedegreeoftheobjectbeingoutliersk-distanceofanobjecto,distk(o):distancebetweenoanditsk-thNNk-distanceneighborhoodofo,Nk(o)={o’|o’inD,dist(o,o’)≤distk(o)}Nk(o)couldbebiggerthanksincemultipleobjectsmayhaveidenticaldistancetooLocalOutlierFactor:LOFReachabilitydistancefromo’too:wherekisauser-specifiedparameterLocalreachabilitydensityofo:37LOF(Localoutlierfactor)ofanobjectoistheaverageoftheratiooflocalreachabilityofoandthoseofo’sk-nearestneighborsThelowerthelocalreachabilitydensityofo,andthehigherthelocalreachabilitydensityofthekNNofo,thehigherLOFThiscapturesalocaloutlierwhoselocaldensityisrelativelylowcomparingtothelocaldensitiesofitskNNClustering-BasedOutlierDetection(1&2):
Notbelongtoanycluster,orfarfromtheclosestoneAnobjectisanoutlierif(1)itdoesnotbelongtoanycluster,(2)thereisalargedistancebetweentheobjectanditsclosestcluster,or(3)itbelongstoasmallorsparseclusterCaseI:NotbelongtoanyclusterIdentifyanimalsnotpartofaflock:Usingadensity-basedclusteringmethodsuchasDBSCANCase2:FarfromitsclosestclusterUsingk-means,partitiondatapointsofintoclustersForeachobjecto,assignanoutlierscorebasedonitsdistancefromitsclosestcenterIfdist(o,co)/avg_dist(co)islarge,likelyanoutlierEx.Intrusiondetection:ConsiderthesimilaritybetweendatapointsandtheclustersinatrainingdatasetUseatrainingsettofindpatternsof“normal”data,e.g.,frequentitemsetsineachsegment,andclustersimilarconnectionsintogroupsComparenewdatapointswiththeclustersmined—Outliersarepossibleattacks39FindCBLOF:DetectoutliersinsmallclustersFindclusters,andsortthemindecreasingsizeToeachdatapoint,assignacluster-basedlocaloutlierfactor(CBLOF):Ifobjpbelongstoalargecluster,CBLOF=cluster_sizeXsimilaritybetweenpandclusterIfpbelongstoasmallone,CBLOF=clustersizeXsimilaritybetw.pandtheclosestlargecluster40Clustering-BasedOutlierDetection(3):
DetectingOutliersinSmallClustersEx.Inthefigure,oisoutliersinceitsclosestlargeclusterisC1,butthesimilaritybetweenoandC1issmall.ForanypointinC3,itsclosestlargeclusterisC2butitssimilarityfromC2islow,plus|C3|=3issmallClustering-BasedMethod:StrengthandWeaknessStrengthDetectoutlierswithoutrequiringanylabeleddataWorkformanytypesofdataClusterscanberegardedassummariesofthedataOncetheclusterareobtained,needonlycompareanyobjectagainsttheclusterstodeterminewhetheritisanoutlier(fast)WeaknessEffectivenessdependshighlyontheclusteringmethodused—theymaynotbeoptimizedforoutlierdetectionHighcomputationalcost:NeedtofirstfindclustersAmethodtoreducethecost:Fixed-widthclusteringApointisassignedtoaclusterifthece
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度城市景觀廣告承攬合同
- 2025年度工地機械租賃與施工綠色能源應用合同
- 2025年度合同管理軟件在線咨詢與解答服務
- 2025年度新能源發(fā)電項目設備采購與安裝工程施工合同
- 2025年度廣東郵政快遞業(yè)務委托管理合同模板
- 2025年度會議現(xiàn)場技術支持與調(diào)試合同
- 2025年度婚慶婚禮策劃執(zhí)行婚慶訂單合同范本
- 2025年度后澆帶施工質(zhì)量保證與保修合同
- 2025年度危險品貨運安全運輸服務合同
- 2025年度智能交通系統(tǒng)設計施工合同
- 跨領域安檢操作標準化的現(xiàn)狀與挑戰(zhàn)
- 大模型落地應用實踐方案
- 催收質(zhì)檢報告范文
- 2024山東一卡通文化旅游一卡通合作協(xié)議3篇
- 2024-2025年江蘇專轉(zhuǎn)本英語歷年真題(含答案)
- 投標廢標培訓
- 腦卒中課件完整版本
- 藥房保潔流程規(guī)范
- 電子信息工程基礎知識單選題100道及答案解析
- 血液透析器課件
- 吊車司機雇傭合同協(xié)議書
評論
0/150
提交評論