江蘇省揚(yáng)州市紅橋高級(jí)中學(xué)2024屆高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
江蘇省揚(yáng)州市紅橋高級(jí)中學(xué)2024屆高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
江蘇省揚(yáng)州市紅橋高級(jí)中學(xué)2024屆高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
江蘇省揚(yáng)州市紅橋高級(jí)中學(xué)2024屆高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
江蘇省揚(yáng)州市紅橋高級(jí)中學(xué)2024屆高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省揚(yáng)州市紅橋高級(jí)中學(xué)2024屆高三數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在“一帶一路”知識(shí)測驗(yàn)后,甲、乙、丙三人對(duì)成績進(jìn)行預(yù)測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個(gè)人預(yù)測正確,那么三人按成績由高到低的次序?yàn)锳.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙2.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點(diǎn),則異面直線EF與BD所成角的余弦值為()A. B. C. D.4.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.已知甲、乙兩人獨(dú)立出行,各租用共享單車一次(假定費(fèi)用只可能為、、元).甲、乙租車費(fèi)用為元的概率分別是、,甲、乙租車費(fèi)用為元的概率分別是、,則甲、乙兩人所扣租車費(fèi)用相同的概率為()A. B. C. D.6.的展開式中,含項(xiàng)的系數(shù)為()A. B. C. D.7.五行學(xué)說是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.8.已知函數(shù)與的圖象有一個(gè)橫坐標(biāo)為的交點(diǎn),若函數(shù)的圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.9.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定10.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.12.已知數(shù)列中,,且當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.則此數(shù)列的前項(xiàng)的和為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,若雙曲線經(jīng)過點(diǎn)(3,4),則該雙曲線的準(zhǔn)線方程為_____.14.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為________.15.在的展開式中,所有的奇數(shù)次冪項(xiàng)的系數(shù)和為-64,則實(shí)數(shù)的值為__________.16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則______,的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角,,的對(duì)邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.18.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點(diǎn)分別是的中點(diǎn).(1)求證:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè)不等式的解集為,若,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個(gè)實(shí)數(shù)根,且,證明:.22.(10分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個(gè)零點(diǎn),且;(2)若當(dāng)時(shí),不等式恒成立,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

利用逐一驗(yàn)證的方法進(jìn)行求解.【詳解】若甲預(yù)測正確,則乙、丙預(yù)測錯(cuò)誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預(yù)測正確,則丙預(yù)測也正確,不符合題意;若丙預(yù)測正確,則甲必預(yù)測錯(cuò)誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預(yù)測正確,不符合題意,故選A.【點(diǎn)睛】本題將數(shù)學(xué)知識(shí)與時(shí)政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識(shí)、邏輯推理能力的考查.2、C【解析】

由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)即得【詳解】解析:,,對(duì)應(yīng)點(diǎn)為,在第三象限.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.3、C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點(diǎn)睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、D【解析】

根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,

當(dāng),若為增函數(shù),則①,

當(dāng),若為增函數(shù),必有在上恒成立,

變形可得:,

又由,可得在上單調(diào)遞減,則,

若在上恒成立,則有②,

若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③

聯(lián)立①②③可得:.

故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).5、B【解析】

甲、乙兩人所扣租車費(fèi)用相同即同為1元,或同為2元,或同為3元,由獨(dú)立事件的概率公式計(jì)算即得.【詳解】由題意甲、乙租車費(fèi)用為3元的概率分別是,∴甲、乙兩人所扣租車費(fèi)用相同的概率為.故選:B.【點(diǎn)睛】本題考查獨(dú)立性事件的概率.掌握獨(dú)立事件的概率乘法公式是解題基礎(chǔ).6、B【解析】

在二項(xiàng)展開式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含項(xiàng)的系數(shù).【詳解】的展開式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.7、A【解析】

列舉出金、木、水、火、土任取兩個(gè)的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.8、A【解析】

根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個(gè)橫坐標(biāo)為的交點(diǎn),則,,,,,若函數(shù)圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋叮瑒t,所以當(dāng)時(shí),,在有且僅有5個(gè)零點(diǎn),,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)圖象的性質(zhì)、三角函數(shù)的平移伸縮以及零點(diǎn)個(gè)數(shù)問題,考查轉(zhuǎn)化思想和計(jì)算能力.9、B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.10、A【解析】

化簡復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對(duì)應(yīng)點(diǎn)的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為位于第一象限故選:A.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.11、A【解析】

依據(jù)無窮等比數(shù)列求和公式,先求出首項(xiàng),再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果?!驹斀狻恳?yàn)闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A。【點(diǎn)睛】本題主要考查無窮等比數(shù)列求和公式的應(yīng)用。12、A【解析】

根據(jù)分組求和法,利用等差數(shù)列的前項(xiàng)和公式求出前項(xiàng)的奇數(shù)項(xiàng)的和,利用等比數(shù)列的前項(xiàng)和公式求出前項(xiàng)的偶數(shù)項(xiàng)的和,進(jìn)而可求解.【詳解】當(dāng)為奇數(shù)時(shí),,則數(shù)列奇數(shù)項(xiàng)是以為首項(xiàng),以為公差的等差數(shù)列,當(dāng)為偶數(shù)時(shí),,則數(shù)列中每個(gè)偶數(shù)項(xiàng)加是以為首項(xiàng),以為公比的等比數(shù)列.所以.故選:A【點(diǎn)睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項(xiàng)和公式、等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

代入求解得,再求準(zhǔn)線方程即可.【詳解】解:雙曲線經(jīng)過點(diǎn),,解得,即.又,故該雙曲線的準(zhǔn)線方程為:.故答案為:.【點(diǎn)睛】本題主要考查了雙曲線的準(zhǔn)線方程求解,屬于基礎(chǔ)題.14、【解析】

根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點(diǎn)睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.15、3或-1【解析】

設(shè),分別令、,兩式相減即可得,即可得解.【詳解】設(shè),令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了運(yùn)算能力,屬于中檔題.16、【解析】

利用等差數(shù)列前項(xiàng)和公式,列出方程組,求出首項(xiàng)和公差的值,利用等差數(shù)列的通項(xiàng)公式可求出數(shù)列的通項(xiàng)公式,可求出的表達(dá)式,然后利用雙勾函數(shù)的單調(diào)性可求出的最大值.【詳解】(1)設(shè)等差數(shù)列的公差為,則,解得,所以,數(shù)列的通項(xiàng)公式為;(2),,令,則且,,由雙勾函數(shù)的單調(diào)性可知,函數(shù)在時(shí)單調(diào)遞減,在時(shí)單調(diào)遞增,當(dāng)或時(shí),取得最大值為.故答案為:;.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗(yàn)符合題意,三角形的周長.(實(shí)際上可解得,符合三邊關(guān)系).【點(diǎn)睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運(yùn)算能力,考查了轉(zhuǎn)化思想,屬于中檔題.18、(1)證明見詳解;(2)【解析】

(1)取中點(diǎn),根據(jù),利用線面垂直的判定定理,可得平面,最后可得結(jié)果.(2)利用建系,假設(shè)長度,可得,以及平面的一個(gè)法向量,然后利用向量的夾角公式,可得結(jié)果.【詳解】(1)取中點(diǎn),連接,如圖由,所以由,平面所以平面,又平面所以(2)假設(shè),由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標(biāo)系,如圖設(shè)平面的一個(gè)法向量為則令,所以則直線與平面所成角的正弦值為【點(diǎn)睛】本題考查線面垂直、線線垂直的應(yīng)用,還考查線面角,學(xué)會(huì)使用建系的方法來解決立體幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.19、(1)見解析;(2).【解析】

(1)取的中點(diǎn),連接,通過證明,即可證得;(2)建立空間直角坐標(biāo)系,利用向量的坐標(biāo)表示即可得解.【詳解】(1)證明:取的中點(diǎn),連接.是的中點(diǎn),,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設(shè),則,建立空間直角坐標(biāo)系.設(shè)平面的法向量為,則,則,?。本€與平面所成角的正弦值為.【點(diǎn)睛】此題考查證明線面平行,求線面角的大小,關(guān)鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據(jù)公式準(zhǔn)確計(jì)算.20、(1)或;(2)【解析】

(1)使用零點(diǎn)分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價(jià)轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當(dāng)時(shí),原不等式可化為.①當(dāng)時(shí),則,所以;②當(dāng)時(shí),則,所以;⑧當(dāng)時(shí),則,所以.綜上所述:當(dāng)時(shí),不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查零點(diǎn)分段求解含絕對(duì)值不等式,熟練使用分類討論的方法,以及知識(shí)的交叉應(yīng)用,同時(shí)掌握等價(jià)轉(zhuǎn)化的思想,屬中檔題.21、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解析】

(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(Ⅱ)求導(dǎo)分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設(shè)的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】(Ⅰ)由題,故.且.故在點(diǎn)處的切線方程為.(Ⅱ)設(shè)恒成立,故.設(shè)函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論