江西省校級聯(lián)考2024屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第1頁
江西省校級聯(lián)考2024屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第2頁
江西省校級聯(lián)考2024屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第3頁
江西省校級聯(lián)考2024屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第4頁
江西省校級聯(lián)考2024屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省校級聯(lián)考2024屆高一數(shù)學第二學期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.點是空間直角坐標系中的一點,過點作平面的垂線,垂足為,則點的坐標為()A.(1,0,0) B. C. D.2.點是角終邊上一點,則的值為()A. B. C. D.3.已知向量,則與().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向4.設(shè)x,y滿足約束條件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目標函數(shù)z=abx+y(a,A.2 B.4 C.6 D.85.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}6.函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的圖象的一個對稱中心是()A. B. C. D.7.已知正四面體ABCD中,E是AB的中點,則異面直線CE與BD所成角的余弦值為()A. B. C. D.8.設(shè)甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20分鐘,在乙地休息10分鐘后,他又以勻速從乙地返回到甲地用了30分鐘,則小王從出發(fā)到返回原地所經(jīng)過的路程y和其所用的時間x的函數(shù)圖象為()A. B.C. D.9.已知等比數(shù)列中,,該數(shù)列的公比為A.2 B.-2 C. D.310.已知是定義在上的奇函數(shù),且滿足,當時,,則等于()A.-1 B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知樣本數(shù)據(jù)的方差是1,如果有,那么數(shù)據(jù),的方差為______.12.分形幾何學是美籍法國數(shù)學家伯努瓦.B.曼德爾布羅特在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領(lǐng)域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是________13.函數(shù)的值域是________14.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為,若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側(cè)面積為________.15.設(shè)向量,若,,則.16.已知扇形的半徑為6,圓心角為,則扇形的弧長為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知三棱錐的體積為1.在側(cè)棱上取一點,使,然后在上取一點,使,繼續(xù)在上取一點,使,……按上述步驟,依次得到點,記三棱錐的體積依次構(gòu)成數(shù)列,數(shù)列的前項和.(1)求數(shù)列和的通項公式;(2)記,為數(shù)列的前項和,若不等式對一切恒成立,求實數(shù)的取值范圍.18.某網(wǎng)站推出了關(guān)于掃黑除惡情況的調(diào)查,調(diào)查數(shù)據(jù)表明,掃黑除惡仍是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注掃黑除惡的人群中隨機選出人,并將這人按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)求出的值;(2)求這人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)(精確到小數(shù)點后一位).19.已知一個幾何體是由一個直角三角形繞其斜邊旋轉(zhuǎn)一周所形成的.若該三角形的周長為12米,三邊長由小到大依次為a,b,c,且b恰好為a,c的算術(shù)平均數(shù).(1)求a,b,c;(2)若在該幾何體的表面涂上一層油漆,且每平方米油漆的造價為5元,求所涂的油漆的價格.20.已知海島在海島北偏東,,相距海里,物體甲從海島以海里/小時的速度沿直線向海島移動,同時物體乙從海島沿著海島北偏西方向以海里/小時的速度移動.(1)問經(jīng)過多長時間,物體甲在物體乙的正東方向;(2)求甲從海島到達海島的過程中,甲、乙兩物體的最短距離.21.如右圖,某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為nmile,在A處看燈塔C在貨輪的北偏西30°,距離為nmile,貨輪由A處向正北航行到D處時,再看燈塔B在北偏東120°,求:(1)A處與D處的距離;(2)燈塔C與D處的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

根據(jù)空間直角坐標系的坐標關(guān)系,即可求得點的坐標.【題目詳解】空間直角坐標系中點過點作平面的垂線,垂足為,可知故選:B【題目點撥】本題考查了空間直角坐標系及坐標關(guān)系,屬于基礎(chǔ)題.2、A【解題分析】

利用三角函數(shù)的定義求出的值,然后利用誘導(dǎo)公式可求出的值.【題目詳解】由三角函數(shù)的定義可得,由誘導(dǎo)公式可得.故選A.【題目點撥】本題考查三角函數(shù)的定義,同時也考查了利用誘導(dǎo)公式求值,在利用誘導(dǎo)公式求值時,充分理解“奇變偶不變,符號看象限”這個規(guī)律,考查計算能力,屬于基礎(chǔ)題.3、A【解題分析】

通過計算兩個向量的數(shù)量積,然后再判斷兩個向量能否寫成的形式,這樣可以選出正確答案.【題目詳解】因為,,所以,而不存在實數(shù),使成立,因此與不共線,故本題選A.【題目點撥】本題考查了兩個平面向量垂直的判斷,考查了平面向量共線的判斷,考查了數(shù)學運算能力.4、B【解題分析】

畫出不等式組對應(yīng)的平面區(qū)域,平移動直線至1,4時z有最大值8,再利用基本不等式可求a+b的最小值.【題目詳解】原不等式組表示的平面區(qū)域如圖中陰影部分所示,當直線z=abx+y(a,b>0)過直線2x-y+2=0與直線8x-y-4=0的交點1,4時,目標函數(shù)z=abx+y(a,即ab=4,所以a+b≥2ab=4,當且僅當a=b=2時,等號成立.所以【題目點撥】二元一次不等式組的條件下的二元函數(shù)的最值問題,常通過線性規(guī)劃來求最值,求最值時往往要考二元函數(shù)的幾何意義,比如3x+4y表示動直線3x+4y-z=0的橫截距的三倍,而y+2x-1則表示動點Px,y與5、D【解題分析】

根據(jù)并集定義計算.【題目詳解】由題意A∪B={x|-2<x<3}.故選D.【題目點撥】本題考查集合的并集運算,屬于基礎(chǔ)題.6、B【解題分析】

先求出變換后的函數(shù)的解析式,求出所得函數(shù)的對稱中心坐標,可得出正確選項.【題目詳解】函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的解析式為,令,得,因此,所得函數(shù)的圖象的一個對稱中心是,故選B.【題目點撥】本題考查圖象的變換以及三角函數(shù)的對稱中心,解題的關(guān)鍵就是求出變換后的三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.7、B【解題分析】試題分析:如圖,取中點,連接,因為是中點,則,或其補角就是異面直線所成的角,設(shè)正四面體棱長為1,則,,.故選B.考點:異面直線所成的角.【名師點睛】求異面直線所成的角的關(guān)鍵是通過平移使其變?yōu)橄嘟恢本€所成角,但平移哪一條直線、平移到什么位置,則依賴于特殊的點的選取,選取特殊點時要盡可能地使它與題設(shè)的所有相減條件和解題目標緊密地聯(lián)系起來.如已知直線上的某一點,特別是線段的中點,幾何體的特殊線段.8、D【解題分析】試題分析:根據(jù)題意,甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20min,在乙地休息10min后,他又以勻速從乙地返回到甲地用了30min,那么可知先是勻速運動,圖像為直線,然后再休息,路程不變,那么可知時間持續(xù)10min,那么最后還是同樣的勻速運動,直線的斜率不變可知選D.考點:函數(shù)圖像點評:主要是考查了路程與時間的函數(shù)圖像的運用,屬于基礎(chǔ)題.9、B【解題分析】分析:根據(jù)等比數(shù)列通項公式求公比.詳解:因為,所以選B.點睛:本題考查等比數(shù)列通項公式,考查基本求解能力.10、C【解題分析】

根據(jù)求得函數(shù)的周期,再結(jié)合奇偶性求得所求表達式的值.【題目詳解】由于故函數(shù)是周期為的周期函數(shù),故,故選C.【題目點撥】本小題主要考查函數(shù)的周期性,考查函數(shù)的奇偶性,考查函數(shù)值的求法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解題分析】

利用方差的性質(zhì)直接求解.【題目詳解】根據(jù)題意,樣本數(shù)據(jù)的平均數(shù)為,方差是1,則有,對于數(shù)據(jù),其平均數(shù)為,其方差為,故答案為1.【題目點撥】本題考查方差的求法,考查方差的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.12、【解題分析】

觀察圖像可知每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.再利用規(guī)律找到行與行之間的遞推關(guān)系即可.【題目詳解】由圖像可得每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.故從第三行開始,每行的實心圓點數(shù)均為前兩行之和.即.故第1到第13行中實心圓點的個數(shù)分別為:.故答案為:【題目點撥】本題主要考查了遞推數(shù)列的實際運用,需要觀察求得行與行之間的實心圓點的遞推關(guān)系,屬于中等題型.13、【解題分析】

利用函數(shù)的單調(diào)性,結(jié)合函數(shù)的定義域求解即可.【題目詳解】因為函數(shù)的定義域是,,函數(shù)是增函數(shù),所以函數(shù)的最小值為:,最大值為:.所以函數(shù)的值域為:,.故答案為,.【題目點撥】本題考查函數(shù)的單調(diào)性以及函數(shù)的值域的求法,考查計算能力.14、【解題分析】

先求出四棱錐的底面對角線的長度,結(jié)合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,可知四條側(cè)棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側(cè)面積.【題目詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側(cè)棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側(cè)面積為.【題目點撥】本題主要考查了空間幾何體的結(jié)構(gòu)特征,考查了學生的空間想象能力與計算求解能力,屬于中檔題.15、【解題分析】

利用向量垂直數(shù)量積為零列等式可得,從而可得結(jié)果.【題目詳解】因為,且,所以,可得,又因為,所以,故答案為.【題目點撥】利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.16、【解題分析】

先將角度化為弧度,再根據(jù)弧長公式求解.【題目詳解】因為圓心角,所以弧長.故答案為:【題目點撥】本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).;(2).【解題分析】

(1)由三棱錐的體積公式可得是等比數(shù)列,從而可求得其通項公式,利用可求得,但要注意;(2)用錯位相減法求得,化簡不等式,分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值.【題目詳解】(1)由題意,∴,三棱錐的體積就是三棱錐的體積,它們都以為底面,因此它們的體積比等于它們高的比,即到平面的距離之比,又都在直線上,所以點到平面的距離之比就等于棱長的比,∴,,,∴.,則,時,,也適合.∴.(2)由(1),,,兩式相減得:,∴.不等式為,即,設(shè),則,∴當時,遞增,當,遞減,是中的最大項,.不等式對恒成立,則,∴或.故的范圍是.【題目點撥】本題考查棱錐的體積,考查等比數(shù)列的通項公式,考查由求通項,考查錯位相減法求和,考查不等式恒成立問題.考查數(shù)列的單調(diào)性,難度較大.對學生的運算求解能力要求較高.在由求時要注意需另外求解,證明數(shù)列單調(diào)性時可以有數(shù)列的前后項作差或作商比較.18、(1)0.035(2)平均數(shù)為:41.5歲中位數(shù)為:42.1歲【解題分析】

(1)根據(jù)頻率之和為1,結(jié)合題中條件,直接列出式子計算,即可得出結(jié)果;(2)根據(jù)每組的中間值乘該組的頻率再求和,即可得出平均數(shù);根據(jù)中位數(shù)兩邊的頻率之和相等,即可求出中位數(shù).【題目詳解】(1)由題意可得:,解得;(2)由題中數(shù)據(jù)可得:歲,設(shè)中位數(shù)為,則,∴歲.【題目點撥】本題主要考查完善頻率分布直方圖,以及由頻率分布直方圖求平均數(shù),中位數(shù)等,熟記頻率的性質(zhì),以及平均數(shù)與中位數(shù)的計算方法即可,屬于??碱}型.19、(1)3,4,1;(2)元.【解題分析】

(1)由題意,根據(jù)周長、三邊關(guān)系、勾股定理,a,b,c,建立方程組,解得即可.(2)根據(jù)題意,旋轉(zhuǎn)得到的幾何體為由底面半徑為米,母線長分別為米3和4米的兩個圓錐所組成的幾何體,計算幾何體的表面積再乘單價即可求解.【題目詳解】(1)由題意得,,所以,又,且,二者聯(lián)立解得,,所以a,b,c的值分別為3,4,1.(2)繞其斜邊旋轉(zhuǎn)一周得到的幾何體為由底面半徑為米,母線長分別為米3和4米的兩個圓錐所組成的幾何體,故其表面積為平方米.因為每平方米油漆的造價為1元,所以所涂的油漆的價格為元.所涂的油漆的價格為:元.【題目點撥】本題考查三角形三邊關(guān)系及旋轉(zhuǎn)體表面積的應(yīng)用,考查計算能力與空間想象能力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論