![2024屆湖北省棗陽市白水高中高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第1頁](http://file4.renrendoc.com/view11/M00/05/2A/wKhkGWWeeiyAZtZEAAIFACmh2Qc958.jpg)
![2024屆湖北省棗陽市白水高中高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第2頁](http://file4.renrendoc.com/view11/M00/05/2A/wKhkGWWeeiyAZtZEAAIFACmh2Qc9582.jpg)
![2024屆湖北省棗陽市白水高中高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第3頁](http://file4.renrendoc.com/view11/M00/05/2A/wKhkGWWeeiyAZtZEAAIFACmh2Qc9583.jpg)
![2024屆湖北省棗陽市白水高中高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第4頁](http://file4.renrendoc.com/view11/M00/05/2A/wKhkGWWeeiyAZtZEAAIFACmh2Qc9584.jpg)
![2024屆湖北省棗陽市白水高中高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第5頁](http://file4.renrendoc.com/view11/M00/05/2A/wKhkGWWeeiyAZtZEAAIFACmh2Qc9585.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆湖北省棗陽市白水高中高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.圓錐的母線長為,側(cè)面展開圖為一個(gè)半圓,則該圓錐表面積為()A. B. C. D.2.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.3.記動(dòng)點(diǎn)P是棱長為1的正方體的對(duì)角線上一點(diǎn),記.當(dāng)為鈍角時(shí),則的取值范圍為()A. B. C. D.4.甲箱子里裝有個(gè)白球和個(gè)紅球,乙箱子里裝有個(gè)白球和個(gè)紅球.從這兩個(gè)箱子里分別摸出一個(gè)球,設(shè)摸出的白球的個(gè)數(shù)為,摸出的紅球的個(gè)數(shù)為,則()A.,且 B.,且C.,且 D.,且5.設(shè),是兩個(gè)不同的平面,,是兩條不同的直線,且,()A.若,則 B.若,則C.若,則 D.若,則6.l:與兩坐標(biāo)軸所圍成的三角形的面積為A.6 B.1 C. D.37.已知,,,是球球面上的四個(gè)點(diǎn),平面,,,則該球的表面積為()A. B. C. D.8.已知向量,若,則()A.1 B. C.2 D.39.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,,則的值為()A.4 B. C. D.10.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),則函數(shù)是__________函數(shù)(奇偶性).12.______.13.方程在區(qū)間內(nèi)解的個(gè)數(shù)是________14.已知P1(x1,y1),P2(x2,y2)是以原點(diǎn)O為圓心的單位圓上的兩點(diǎn),∠P1OP2=θ(θ為鈍角).若,則x1x2+y1y2的值為_____.15.在中,若,點(diǎn),分別是,的中點(diǎn),則的取值范圍為___________.16.直線與圓交于兩點(diǎn),若為等邊三角形,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在銳角中,若角,求的值域.18.已知向量,向量.(1)求向量的坐標(biāo);(2)當(dāng)為何值時(shí),向量與向量共線.19.等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,滿足,,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.20.已知分別是數(shù)列的前項(xiàng)和,且.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.已知,(1)求;(2)若,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】
由圓錐展開圖為半徑為的半圓,得出其弧長等于圓錐的底面圓周長,可得出圓錐底面圓的半徑,然后利用圓錐的表面積公式可計(jì)算出圓錐的表面積.【題目詳解】一個(gè)圓錐的母線長為,它的側(cè)面展開圖為半圓,半圓的弧長為,即圓錐的底面周長為,設(shè)圓錐的底面半徑是,則得到,解得,這個(gè)圓錐的底面半徑是,圓錐的表面積為.故選:B.【題目點(diǎn)撥】本題考查圓錐表面積的計(jì)算,計(jì)算時(shí)要結(jié)合已知條件列等式計(jì)算出圓錐的相關(guān)幾何量,考查運(yùn)算求解能力,屬于中等題.2、D【解題分析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設(shè)內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選3、B【解題分析】
建立空間直角坐標(biāo)系,利用∠APC不是平角,可得∠APC為鈍角等價(jià)于cos∠APC<0,即
,從而可求λ的取值范圍.【題目詳解】
由題設(shè),建立如圖所示的空間直角坐標(biāo)系D-xyz,
則有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)
∴
=(1,1,-1),∴
=(λ,λ,-λ),
∴
=
+
=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)
=
+
=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)
顯然∠APC不是平角,所以∠APC為鈍角等價(jià)于cos∠APC<0
∴
∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得
<λ<1
因此,λ的取值范圍是(
,1),故選B.
點(diǎn)評(píng):本題考查了用空間向量求直線間的夾角,一元二次不等式的解法,屬于中檔題.4、D【解題分析】可取,;,,,,,故選D.5、A【解題分析】試題分析:由面面垂直的判定定理:如果一個(gè)平面經(jīng)過另一平面的一條垂線,則兩面垂直,可得,可得考點(diǎn):空間線面平行垂直的判定與性質(zhì)6、D【解題分析】
先求出直線與坐標(biāo)軸的交點(diǎn),再求三角形的面積得解.【題目詳解】當(dāng)x=0時(shí),y=2,當(dāng)y=0時(shí),x=3,所以三角形的面積為.故選:D【題目點(diǎn)撥】本題主要考查直線與坐標(biāo)軸的交點(diǎn)的坐標(biāo)的求法,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.7、B【解題分析】
根據(jù)截面法,作出球心O與外接圓圓心所在截面,利用平行四邊形和勾股定理可求得球半徑,從而得到結(jié)果.【題目詳解】如圖,的外接圓圓心E為BC的中點(diǎn),設(shè)球心為O,連接OE,OP,OA,D為PA的中點(diǎn),連接OD.根據(jù)直角三角形的性質(zhì)可得,且平面,則//,由為等腰三角形可得,又,所以//,則四邊形ODAE是矩形,所以=,而,中,根據(jù)勾股定理可得,所以該球的表面積為.所以本題答案為B.【題目點(diǎn)撥】本題考查求三棱錐外接球的表面積問題,幾何體的外接球、內(nèi)切球問題,關(guān)鍵是球心位置的確定,必要時(shí)需把球的半徑放置在可解的幾何圖形中,如果球心的位置不易確定,則可以把該幾何體補(bǔ)成規(guī)則的幾何體,便于球心位置和球的半徑的確定.8、B【解題分析】
可求出,根據(jù)即可得出,進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算即可求出x.【題目詳解】;∵;∴;解得.故選B.【題目點(diǎn)撥】本題考查向量垂直的充要條件,向量坐標(biāo)的減法和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.9、B【解題分析】
由正弦定理可得,,代入即可求解.【題目詳解】∵,,∴由正弦定理可得,,則.故選:B.【題目點(diǎn)撥】本題考查正弦定理的簡單應(yīng)用,考查函數(shù)與方程思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、B【解題分析】試題分析:線面垂直,則有該直線和平面內(nèi)所有的直線都垂直,故B正確.考點(diǎn):空間點(diǎn)線面位置關(guān)系.二、填空題:本大題共6小題,每小題5分,共30分。11、偶【解題分析】
利用誘導(dǎo)公式將函數(shù)的解析式進(jìn)行化簡,即可判斷出函數(shù)的奇偶性.【題目詳解】,因此,函數(shù)為偶函數(shù).故答案為:偶.【題目點(diǎn)撥】本題考查三角函數(shù)奇偶性的判斷,解題的關(guān)鍵就是利用誘導(dǎo)公式對(duì)三角函數(shù)解析式進(jìn)行化簡,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.12、【解題分析】
,,故答案為.考點(diǎn):三角函數(shù)誘導(dǎo)公式、切割化弦思想.13、4.【解題分析】分析:通過二倍角公式化簡得到,進(jìn)而推斷或,進(jìn)而求得結(jié)果.詳解:,所以或,因?yàn)?,所以或或或,故解的個(gè)數(shù)是4.點(diǎn)睛:該題考查的是有關(guān)方程解的個(gè)數(shù)問題,在解題的過程中,涉及到的知識(shí)點(diǎn)有正弦的倍角公式,方程的求解問題,注意一定不要兩邊除以,最后求得結(jié)果.14、-【解題分析】
先利用平面向量數(shù)量積的定義和坐標(biāo)運(yùn)算得到,再利用兩角和的正弦公式和平方關(guān)系進(jìn)行求解.【題目詳解】根據(jù)題意知,又P1,P2在單位圓上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ為鈍角,聯(lián)立①②求得cosθ=-.【題目點(diǎn)撥】本題主要考查平面向量的數(shù)量積定義和坐標(biāo)運(yùn)算、兩角和的正弦公式,意在考查學(xué)生的邏輯思維能力和基本運(yùn)算能力,屬于中檔題.15、【解題分析】
記,,,根據(jù)正弦定理得到,再由題意,得到,,推出,再由題意,確定的范圍,即可得出結(jié)果.【題目詳解】記,,,由得,所以,即,因此,因?yàn)?,分別是,的中點(diǎn),所以,同理:,所以,因?yàn)榍?,所以,則,所以,則,所以.即的取值范圍為.故答案為【題目點(diǎn)撥】本題主要考查解三角形,熟記正弦定理,以及兩角和的正弦公式即可,屬于??碱}型.16、或【解題分析】
根據(jù)題意可得圓心到直線的距離為,根據(jù)點(diǎn)到直線的距離公式列方程解出即可.【題目詳解】圓,即,圓的圓心為,半徑為,∵直線與圓交于兩點(diǎn)且為等邊三角形,∴,故圓心到直線的距離為,即,解得或,故答案為或.【題目點(diǎn)撥】本題主要考查了直線和圓相交的弦長公式,以及點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解題分析】
(1)利用二倍角、輔助角公式化簡,然后利用單調(diào)區(qū)間公式求解單調(diào)區(qū)間;(2)根據(jù)條件求解出的范圍,然后再求解的值域.【題目詳解】(1),令,解得:,所以單調(diào)減區(qū)間為:,;(2)由銳角三角形可知:,所以,則,又,所以,,則.【題目點(diǎn)撥】本題考查三角恒等變換以及三角函數(shù)值域問題,難度較易.根據(jù)三角形形狀求解角范圍的時(shí)候,要注意到隱含條件的使用.18、(1)(2)【解題分析】試題分析:(1)根據(jù)向量坐標(biāo)運(yùn)算公式計(jì)算;(2)求出的坐標(biāo),根據(jù)向量共線與坐標(biāo)的關(guān)系列方程解出k;試題解析:(1)(2),∵與共線,∴∴19、(1),;(2)【解題分析】
(1)由是等差數(shù)列,,,可求出,由是等比數(shù)列,,,,可求出;(2)將和的通項(xiàng)公式代入,則,利用裂項(xiàng)相消求和法可求出.【題目詳解】(1),,,解得.又,,.(2)由(1),得【題目點(diǎn)撥】本題考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式的求法,考查了用裂項(xiàng)相消求數(shù)列的前項(xiàng)和,屬于中檔題.20、(1),,(2)【解題分析】
(1)分別求出和時(shí)的,,再檢驗(yàn)即可.(2)利用錯(cuò)位相減法即可求出數(shù)列的前項(xiàng)和【題目詳解】(1)當(dāng)時(shí),,當(dāng)時(shí),.檢驗(yàn):當(dāng)時(shí),,所以.因?yàn)?,所?當(dāng)時(shí),,即,當(dāng)時(shí),整理得到:.所以數(shù)列是以首項(xiàng)為,公差為的等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 仁愛英語7年級(jí)(下冊(cè))U6T3學(xué)科講義有答案
- 綠化養(yǎng)護(hù)戰(zhàn)略合作協(xié)議書合同(2篇)
- 簡單家庭協(xié)議書(2篇)
- 貸款申請(qǐng)書最好
- 一建《建設(shè)工程項(xiàng)目管理》試題庫資料練習(xí)含【答案】卷1
- 鄉(xiāng)鎮(zhèn)(街道)執(zhí)法人員資格考試復(fù)習(xí)題庫(核心題版)
- 湖南省邵陽市武岡市2024-2025學(xué)年高二上學(xué)期期中考試物理試題(解析版)
- 環(huán)保教育在青少年中的普及與實(shí)踐
- 現(xiàn)代營銷策略在零售業(yè)的應(yīng)用
- 2025年中國兒童用重點(diǎn)藥品(咳嗽、發(fā)熱)行業(yè)市場調(diào)研及投資規(guī)劃建議報(bào)告
- 幼兒園2024-2025學(xué)年第二學(xué)期園務(wù)工作計(jì)劃
- 2024-2030年中國精細(xì)化工行業(yè)發(fā)展分析及發(fā)展前景與投資研究報(bào)告
- 2024年北京市中考數(shù)學(xué)試卷(含答案解析)
- 河南省2024年中考英語真題【附真題答案】
- 2024公路工程施工安全風(fēng)險(xiǎn)辨識(shí)與管控實(shí)施指南
- 浙江省嘉興市2023-2024學(xué)年高一上學(xué)期1月期末考試政治試題
- 2024年(學(xué)習(xí)強(qiáng)國)思想政治理論知識(shí)考試題庫與答案
- 2024時(shí)事政治考試題庫(基礎(chǔ)題)
- 2023版《思想道德與法治》(緒論-第一章)緒論 擔(dān)當(dāng)復(fù)興大任 成就時(shí)代新人;第一章 領(lǐng)悟人生真諦 把握人生方向 第3講 創(chuàng)造有意義的人生
- 《不一樣的物體作業(yè)設(shè)計(jì)方案-2023-2024學(xué)年科學(xué)大象版》
- 小學(xué)校本課程教材《趣味數(shù)學(xué)》
評(píng)論
0/150
提交評(píng)論