




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆上海市七寶高中高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若直線上存在點(diǎn)滿足則實(shí)數(shù)的最大值為A. B. C. D.2.如圖所示,已知兩座燈塔A和B與海洋觀察站C的距離都等于akm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為()A.a(chǎn)km B.a(chǎn)kmC.a(chǎn)km D.2akm3.在中,角的對(duì)邊分別是,已知,則()A. B. C. D.或4.過點(diǎn)且與直線垂直的直線方程是.A. B. C. D.5.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.6.在中,內(nèi)角,,的對(duì)邊分別為,,,且=.則A. B. C. D.7.已知等比數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公比()A. B. C.或 D.以上都不對(duì)8.如圖,正方體中,異面直線與所成角的正弦值等于A. B. C. D.19.設(shè),是平面內(nèi)一組基底,若,,,則以下不正確的是()A. B. C. D.10.幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是A.440 B.330C.220 D.110二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的最大值是____.12.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為________.13.已知為直線上一點(diǎn),過作圓的切線,則切線長(zhǎng)最短時(shí)的切線方程為__________.14.若三棱錐的底面是以為斜邊的等腰直角三角形,,,則該三棱錐的外接球的表面積為________.15.已知等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項(xiàng)和=________.16.函數(shù)的單調(diào)增區(qū)間是_________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,直線截以坐標(biāo)原點(diǎn)為圓心的圓所得的弦長(zhǎng)為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點(diǎn),,當(dāng)時(shí),求直線的方程;(3)設(shè),是圓上任意兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,若直線,分別交軸于點(diǎn)和,問是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.18.已知是同一平面內(nèi)的三個(gè)向量,其中.(1)若,求;(2)若與共線,求的值.19.設(shè)數(shù)列是等差數(shù)列,其前n項(xiàng)和為;數(shù)列是等比數(shù)列,公比大于0,其前項(xiàng)和為.已知,,,.(1)求數(shù)列和數(shù)列的通項(xiàng)公式;(2),求正整數(shù)n的值.20.在△中,所對(duì)的邊分別為,,.(1)求;(2)若,求,,.21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)區(qū)間.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】
首先畫出可行域,然后結(jié)合交點(diǎn)坐標(biāo)平移直線即可確定實(shí)數(shù)m的最大值.【題目詳解】不等式組表示的平面區(qū)域如下圖所示,由,得:,即C點(diǎn)坐標(biāo)為(-1,-2),平移直線x=m,移到C點(diǎn)或C點(diǎn)的左邊時(shí),直線上存在點(diǎn)在平面區(qū)域內(nèi),所以,m≤-1,即實(shí)數(shù)的最大值為-1.【題目點(diǎn)撥】本題主要考查線性規(guī)劃及其應(yīng)用,屬于中等題.2、B【解題分析】
先根據(jù)題意確定的值,再由余弦定理可直接求得的值.【題目詳解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故選:B.【題目點(diǎn)撥】本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.3、B【解題分析】
由已知知,所以B<A=,由正弦定理得,==,所以,故選B考點(diǎn):正弦定理4、A【解題分析】
根據(jù)與已知直線垂直的直線系方程可假設(shè)直線為,代入點(diǎn)解得直線方程.【題目詳解】設(shè)與直線垂直的直線為:代入可得:,解得:所求直線方程為:,即本題正確選項(xiàng):【題目點(diǎn)撥】本題考查利用兩條直線的垂直關(guān)系求解直線方程的問題,屬于基礎(chǔ)題.5、C【解題分析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡(jiǎn),然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)?,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【題目詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個(gè)單位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【題目點(diǎn)撥】本題考查三角函數(shù)圖象變換,同時(shí)也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.6、C【解題分析】試題分析:由正弦定理得,,由于,,,故答案為C.考點(diǎn):正弦定理的應(yīng)用.7、C【解題分析】
根據(jù)和可得,解得結(jié)果即可.【題目詳解】由得,所以,所以,所以,解得或故選:C.【題目點(diǎn)撥】本題考查了等比數(shù)列的通項(xiàng)公式的基本量的運(yùn)算,屬于基礎(chǔ)題.8、D【解題分析】
由線面垂直的判定定理得:,又,所以面,由線面垂直的性質(zhì)定理得:,即可求解.【題目詳解】解:連接,因?yàn)樗倪呅螢檎叫危?,又,所以面,所以,所以異面直線與所成角的正弦值等于1,故選D.【題目點(diǎn)撥】本題考查了線面垂直的判定定理及性質(zhì)定理,屬中檔題.9、D【解題分析】
由已知及平面向量基本定理可得:,問題得解.【題目詳解】因?yàn)椋瞧矫鎯?nèi)一組基底,且,由平面向量基本定理可得:,所以,所以D不正確故選D【題目點(diǎn)撥】本題主要考查了平面向量基本定理的應(yīng)用,還考查了同角三角函數(shù)的基本關(guān)系,屬于較易題.10、A【解題分析】由題意得,數(shù)列如下:則該數(shù)列的前項(xiàng)和為,要使,有,此時(shí),所以是第組等比數(shù)列的部分和,設(shè),所以,則,此時(shí),所以對(duì)應(yīng)滿足條件的最小整數(shù),故選A.點(diǎn)睛:本題非常巧妙地將實(shí)際問題和數(shù)列融合在一起,首先需要讀懂題目所表達(dá)的具體含義,以及觀察所給定數(shù)列的特征,進(jìn)而判斷出該數(shù)列的通項(xiàng)和求和.另外,本題的難點(diǎn)在于數(shù)列里面套數(shù)列,第一個(gè)數(shù)列的和又作為下一個(gè)數(shù)列的通項(xiàng),而且最后幾項(xiàng)并不能放在一個(gè)數(shù)列中,需要進(jìn)行判斷.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解題分析】
利用對(duì)數(shù)的運(yùn)算法則以及二次函數(shù)的最值化簡(jiǎn)求解即可.【題目詳解】,,,則.當(dāng)且僅當(dāng)時(shí),函數(shù)取得最大值.【題目點(diǎn)撥】本題主要考查了對(duì)數(shù)的運(yùn)算法則應(yīng)用以及利用二次函數(shù)的配方法求最值.12、【解題分析】
求出的垂直平分線方程,兩垂直平分線交點(diǎn)為外接圓圓心.再由兩點(diǎn)間距離公式計(jì)算.【題目詳解】由點(diǎn)B(0,),C(2,),得線段BC的垂直平分線方程為x=1,①由點(diǎn)A(1,0),B(0,),得線段AB的垂直平分線方程為②聯(lián)立①②,解得△ABC外接圓的圓心坐標(biāo)為,其到原點(diǎn)的距離為.故答案為:【題目點(diǎn)撥】本題考查三角形外接圓圓心坐標(biāo),外心是三角形三條邊的中垂線的交點(diǎn),到三頂點(diǎn)距離相等.13、或【解題分析】
利用切線長(zhǎng)最短時(shí),取最小值找點(diǎn):即過圓心作直線的垂線,求出垂足點(diǎn).就切線的斜率是否存在分類討論,結(jié)合圓心到切線的距離等于半徑得出切線的方程.【題目詳解】設(shè)切線長(zhǎng)為,則,所以當(dāng)切線長(zhǎng)取最小值時(shí),取最小值,過圓心作直線的垂線,則點(diǎn)為垂足點(diǎn),此時(shí),直線的方程為,聯(lián)立,得,點(diǎn)的坐標(biāo)為.①若切線的斜率不存在,此時(shí)切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設(shè)切線的方程為,即.由題意可得,化簡(jiǎn)得,解得,此時(shí),所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【題目點(diǎn)撥】本題考查過點(diǎn)的圓的切線方程的求解,考查圓的切線長(zhǎng)相關(guān)問題,在過點(diǎn)引圓的切線問題時(shí),要對(duì)直線的斜率是否存在進(jìn)行分類討論,另外就是將直線與圓相切轉(zhuǎn)化為圓心到直線的距離等于半徑長(zhǎng),考查分析問題與解決問題的能力,屬于中等題.14、【解題分析】
由已知計(jì)算后知也是以為斜邊的直角三角形,這樣的中點(diǎn)到棱錐四個(gè)頂點(diǎn)的距離相等,即為外接球的球心,從而很容易得球的半徑,計(jì)算出表面積.【題目詳解】因?yàn)?,所以是等腰直角三角形,且為斜邊,為的中點(diǎn),因?yàn)榈酌媸且詾樾边叺牡妊苯侨切?,所以,點(diǎn)即為球心,則該三棱錐的外接圓半徑,故該三棱錐的外接球的表面積為.【題目點(diǎn)撥】本題考查球的表面積,考查三棱錐與外接球,解題關(guān)鍵是找到外接球的球心,證明也是以為斜邊的直角三角形,利用直角三角形的性質(zhì)是本題的關(guān)鍵.也是尋找外接球球心的一種方法.15、【解題分析】試題分析:根據(jù)題意,由于等比數(shù)列中,,,則可知公比為,那么可知等比數(shù)列中,,,故可知,那么可知數(shù)列的前項(xiàng)和=1=,故可知答案為.考點(diǎn):等比數(shù)列點(diǎn)評(píng):主要是考查了等比數(shù)列的通項(xiàng)公式以及數(shù)列的求和的運(yùn)用,屬于基礎(chǔ)題.16、,【解題分析】
令,即可求得結(jié)果.【題目詳解】令,解得:,所以單調(diào)遞增區(qū)間是,故填:,【題目點(diǎn)撥】本題考查了型如:?jiǎn)握{(diào)區(qū)間的求法,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)見解析【解題分析】
(1)利用點(diǎn)到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結(jié)合勾股定理,可以求出圓的半徑,進(jìn)而可以求出圓的方程;(2)設(shè)出直線的截距式方程,利用圓的切線性質(zhì),得到一個(gè)方程,結(jié)合已知,又得到一個(gè)方程,兩個(gè)方程聯(lián)立,解方程組,即可求出直線直線的方程;(3)設(shè),,則,,,分別求出直線與軸交點(diǎn)坐標(biāo)、直線與軸交點(diǎn)坐標(biāo),求出的表達(dá)式,通過計(jì)算可得.【題目詳解】(1)因?yàn)辄c(diǎn)到直線的距離為,所以圓的半徑為,故圓的方程為.(2)設(shè)直線的方程為,即,由直線與圓相切,得,①.②由①②解得,此時(shí)直線的方程為.(3)設(shè),,則,,,直線與軸交點(diǎn)坐標(biāo)為,,直線與軸交點(diǎn)坐標(biāo)為,,,為定值2.【題目點(diǎn)撥】本題考查了圓的垂徑定理、圓的切線性質(zhì)、勾股定理,考查了求直線方程,考查了數(shù)學(xué)運(yùn)算能力.18、(1);(2)【解題分析】
(1)根據(jù)向量的坐標(biāo)的運(yùn)算法則和向量垂直的條件,以及模的定義即可求出.(2)根據(jù)向量共線的條件即可求出.【題目詳解】(1)因?yàn)椋?)由已知:【題目點(diǎn)撥】本題考查了向量的坐標(biāo)運(yùn)算以及向量的垂直和平行的坐標(biāo)表示,屬于基礎(chǔ)題.19、(1);;(2)n的值為1.【解題分析】
(1)根據(jù)等比數(shù)列與等差數(shù)列,分別設(shè)公比與公差再用基本量法求解即可.(2)分別利用等差等比數(shù)列的求和公式求解得與,再代入整理求解二次方程即可.【題目詳解】解:(1)設(shè)等比數(shù)列的公比為q,由,,可得.∵,可得.故;設(shè)等差數(shù)列的公差為d,由,得,由,得,∴.故;(2)由是等差數(shù)列,且,得由是等比數(shù)列,且,得.可得.由,可得,整理得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 六一游樂活動(dòng)方案
- 六一游戲集市活動(dòng)方案
- 六一酒館活動(dòng)策劃方案
- 六一預(yù)售活動(dòng)方案
- 六味齋營(yíng)銷活動(dòng)策劃方案
- 六年級(jí)漢語拼音活動(dòng)方案
- 業(yè)務(wù)助理考試試題及答案
- 安全生產(chǎn)電工試題及答案
- 藥師考試試題及答案解析
- 安全設(shè)施管理試題及答案
- GB/T 5563-2013橡膠和塑料軟管及軟管組合件靜液壓試驗(yàn)方法
- GB/T 5497-1985糧食、油料檢驗(yàn)水分測(cè)定法
- 公寓de全人物攻略本為個(gè)人愛好而制成如需轉(zhuǎn)載注明信息
- 團(tuán)隊(duì)建設(shè)(完整版)-HR貓貓復(fù)習(xí)課程
- 五年級(jí)讀書分享課件
- 倉庫管理基礎(chǔ)知識(shí)培訓(xùn)
- 自閉癥孤獨(dú)癥兒童語言與溝通評(píng)估表
- DB32989-2007低壓電氣裝置規(guī)程
- 部編版六年級(jí)下冊(cè)道德與法治知識(shí)點(diǎn)大匯總
- T∕CSTE 0008-2020 污水處理用碳源液體乙酸鈉
- Q∕GDW 46 10022.9-2020 主進(jìn)水閥本體運(yùn)檢導(dǎo)則
評(píng)論
0/150
提交評(píng)論