版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)2024屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.半徑為的半圓卷成一個圓錐,它的體積是()A. B. C. D.2.已知圓(為圓心,且在第一象限)經(jīng)過,,且為直角三角形,則圓的方程為()A. B.C. D.3.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.5 B.8 C.13 D.214.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則5.下列命題中正確的是()A. B.C. D.6.已知向量,,則與的夾角為()A. B. C. D.7.已知角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸正半軸重合,終邊經(jīng)過點(diǎn),則()A. B. C. D.8.在中,若,則下列結(jié)論錯誤的是()A.當(dāng)時,是直角三角形 B.當(dāng)時,是銳角三角形C.當(dāng)時,是鈍角三角形 D.當(dāng)時,是鈍角三角形9.如圖,各棱長均為的正三棱柱,、分別為線段、上的動點(diǎn),且平面,,中點(diǎn)軌跡長度為,則正三棱柱的體積為()A. B. C.3 D.10.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函數(shù)g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.的最大值為______.12.若直線的傾斜角為,則______.13.在平面直角坐標(biāo)系中,點(diǎn)在第二象限,,,則向量的坐標(biāo)為________.14.在平面直角坐標(biāo)系中,點(diǎn),,若直線上存在點(diǎn)使得,則實(shí)數(shù)的取值范圍是_____.15.正六棱柱各棱長均為,則一動點(diǎn)從出發(fā)沿表面移動到時的最短路程為__________.16.已知為的三個內(nèi)角A,B,C的對邊,向量,.若,且,則B=三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,,,,,,,分別為棱,的中點(diǎn).(1)證明:平面.(2)證明:平面平面.18.某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求圖中的值;(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分,眾數(shù),中位數(shù);(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)1:12:13:44:519.已知函數(shù).(1)判斷函數(shù)奇偶性;(2)討論函數(shù)的單調(diào)性;(3)比較與的大小.20.如圖所示,在三棱柱中,與都為正三角形,且平面,分別是的中點(diǎn).求證:(1)平面平面;(2)平面平面.21.?dāng)?shù)列an,n∈N*各項(xiàng)均為正數(shù),其前n項(xiàng)和為S(1)求證數(shù)列Sn2為等差數(shù)列,并求數(shù)列(2)設(shè)bn=24Sn4-1,求數(shù)列bn的前n
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】
根據(jù)圓錐的底面圓周長等于半圓弧長可計(jì)算出圓錐底面圓半徑,由勾股定理可計(jì)算出圓錐的高,再利用錐體體積公式可計(jì)算出圓錐的體積.【題目詳解】設(shè)圓錐的底面圓半徑為,高為,則圓錐底面圓周長為,得,,所以,圓錐的體積為,故選:A.【題目點(diǎn)撥】本題考查圓錐體積的計(jì)算,解題的關(guān)鍵就是要計(jì)算出圓錐底面圓的半徑和高,解題時要從已知條件列等式計(jì)算,并分析出一些幾何等量關(guān)系,考查空間想象能力與計(jì)算能力,屬于中等題.2、D【解題分析】
設(shè)且,半徑為,根據(jù)題意列出方程組,求得的值,即可求解.【題目詳解】依題意,圓經(jīng)過點(diǎn),可設(shè)且,半徑為,則,解得,所以圓的方程為.【題目點(diǎn)撥】本題主要考查了圓的標(biāo)準(zhǔn)方程的求解,其中解答中熟記圓的標(biāo)準(zhǔn)方程的形式,以及合理應(yīng)用圓的性質(zhì)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.3、C【解題分析】
通過程序一步步分析得到結(jié)果,從而得到輸出結(jié)果.【題目詳解】開始:,執(zhí)行程序:;;;;,執(zhí)行“否”,輸出的值為13,故選C.【題目點(diǎn)撥】本題主要考查算法框圖的輸出結(jié)果,意在考查學(xué)生的分析能力及計(jì)算能力,難度不大.4、B【解題分析】試題分析:線面垂直,則有該直線和平面內(nèi)所有的直線都垂直,故B正確.考點(diǎn):空間點(diǎn)線面位置關(guān)系.5、D【解題分析】
根據(jù)向量的加減法的幾何意義以及向量數(shù)乘的定義即可判斷.【題目詳解】,,,,故選D.【題目點(diǎn)撥】本題主要考查向量的加減法的幾何意義以及向量數(shù)乘的定義的應(yīng)用.6、D【解題分析】
利用夾角公式計(jì)算出兩個向量夾角的余弦值,進(jìn)而求得兩個向量的夾角.【題目詳解】設(shè)兩個向量的夾角為,則,故.故選:D.【題目點(diǎn)撥】本小題主要考查兩個向量夾角的計(jì)算,考查向量數(shù)量積和模的坐標(biāo)表示,屬于基礎(chǔ)題.7、B【解題分析】
先由角的終邊過點(diǎn),求出,再由二倍角公式,即可得出結(jié)果.【題目詳解】因?yàn)榻堑捻旤c(diǎn)在坐標(biāo)原點(diǎn),始邊與軸正半軸重合,終邊經(jīng)過點(diǎn),所以,因此.故選B【題目點(diǎn)撥】本題主要考查三角函數(shù)的定義,以及二倍角公式,熟記三角函數(shù)的定義與二倍角公式即可,屬于??碱}型.8、D【解題分析】
由正弦定理化簡已知可得,利用余弦定理,勾股定理,三角形兩邊之和大于第三邊等知識逐一分析各個選項(xiàng)即可得解.【題目詳解】解:為非零實(shí)數(shù)),可得:,由正弦定理,可得:,對于A,時,可得:,可得,即為直角,可得是直角三角形,故正確;對于B,時,可得:,可得為最大角,由余弦定理可得,可得是銳角三角形,故正確;對于C,時,可得:,可得為最大角,由余弦定理可得,可得是鈍角三角形,故正確;對于D,時,可得:,可得,這樣的三角形不存在,故錯誤.故選:D.【題目點(diǎn)撥】本題主要考查了正弦定理,余弦定理,勾股定理在解三角形中的應(yīng)用,考查了分類討論思想,屬于基礎(chǔ)題.9、D【解題分析】
設(shè)的中點(diǎn)分別為,判斷出中點(diǎn)的軌跡是等邊三角形的高,由此計(jì)算出正三棱柱的邊長,進(jìn)而計(jì)算出正三棱柱的體積.【題目詳解】設(shè)的中點(diǎn)分別為,連接.由于平面,所以.當(dāng)時,中點(diǎn)為平面的中心,即的中點(diǎn)(設(shè)為點(diǎn))處.當(dāng)時,此時的中點(diǎn)為的中點(diǎn).所以點(diǎn)的軌跡是三角形的高.由于三角形是等邊三角形,而,所以.故正三棱柱的體積為.故選:D【題目點(diǎn)撥】本小題主要考查線面平行的有關(guān)性質(zhì),考查棱柱的體積計(jì)算,考查空間想象能力,考查分析與解決問題的能力,屬于中檔題.10、B【解題分析】
根據(jù)變換T(m,n)可生成函數(shù)g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【題目詳解】由題意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因?yàn)閥=1x+x-2在x∈[2,10]上單調(diào)遞減且為正值,y=10-x在x∈[2,10]上單調(diào)遞減且為正值,所以g(x)=10-x(【題目點(diǎn)撥】本題主要考查了函數(shù)的單調(diào)性,利用單調(diào)性求函數(shù)的最大值,涉及創(chuàng)設(shè)新情景及函數(shù)式的變形,屬于難題二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】
由余弦型函數(shù)的值域可求得整個函數(shù)的值域,進(jìn)而得到最大值.【題目詳解】,即故答案為:【題目點(diǎn)撥】本題考查含余弦型函數(shù)的值域的求解問題,關(guān)鍵是明確在自變量無范圍限制時,余弦型函數(shù)的值域?yàn)?12、【解題分析】
首先利用直線方程求出直線斜率,通過斜率求出傾斜角.【題目詳解】由題知直線方程為,所以直線的斜率,又因?yàn)閮A斜角,所以傾斜角.故答案為:.【題目點(diǎn)撥】本題主要考查了直線傾斜角與直線斜率的關(guān)系,屬于基礎(chǔ)題.13、【解題分析】
由三角函數(shù)的定義求出點(diǎn)的坐標(biāo),然后求向量的坐標(biāo).【題目詳解】設(shè)點(diǎn),由三角函數(shù)的定義有,得,,得,所以,所以故答案為:【題目點(diǎn)撥】本題考查三角函數(shù)的定義的應(yīng)用和已知點(diǎn)的坐標(biāo)求向量坐標(biāo),屬于基礎(chǔ)題.14、.【解題分析】
設(shè)由,求出點(diǎn)軌跡方程,可判斷其軌跡為圓,點(diǎn)又在直線,轉(zhuǎn)化為直線與圓有公共點(diǎn),只需圓心到直線的距離小于半徑,得到關(guān)于的不等式,求解,即可得出結(jié)論.【題目詳解】設(shè),,,,整理得,又點(diǎn)在直線,直線與圓共公共點(diǎn),圓心到直線的距離,即.故答案為:.【題目點(diǎn)撥】本題考查求曲線的軌跡方程,考查直線與圓的位置關(guān)系,屬于中檔題.15、【解題分析】
根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【題目詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側(cè)面和上表面到D1的路程最短為故答案為:.【題目點(diǎn)撥】本題主要考查了空間幾何體展形圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.16、【解題分析】
根據(jù)得,再利用正弦定理得,化簡得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【題目詳解】根據(jù)題意,由正弦定理可得則所以答案為?!绢}目點(diǎn)撥】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解題分析】
(1)由勾股定理得,已知,故得證;(2)由題,E為AB中點(diǎn),,故ABCD為平行四邊形,,由F為PB中點(diǎn),EF為三角形APB的中位線,故,AP和AD相交于A,EF和CE相交于E,故得證.【題目詳解】證明:(1)因?yàn)?,,,所以,由所?因?yàn)?,,所以平?(2)因?yàn)闉槔獾闹悬c(diǎn),所以,因?yàn)?,所?因?yàn)椋?,所以四邊形為平行四邊形,所以,所以平?因?yàn)?,分別為棱,的中點(diǎn),所以,所以平面.因?yàn)椋矫?,平面,所以平面平?【題目點(diǎn)撥】本題考查直線和平面垂直的判定,平面和平面平行的判斷,比較基礎(chǔ).18、(1)0.005;(2)平均分為73,眾數(shù)為65,中位數(shù)為;(3)10【解題分析】
(1)根據(jù)頻率之和為1,直接列式計(jì)算即可;(2)平均數(shù)等于每組的中間值乘以該組頻率,再求和;眾數(shù)指頻率最大的一組的中間值;中位數(shù)兩端的小長方形面積之和均為0.5;(3)根據(jù)題意分別求出,,,的人數(shù),即可得出結(jié)果.【題目詳解】(1)由頻率分布直方圖可得:,(2)平均分為眾數(shù)為65分.中位數(shù)為(3)數(shù)學(xué)成績在的人數(shù)為,在的人數(shù)為,在的人數(shù)為,在的人數(shù)為,在的人數(shù)為,所以數(shù)學(xué)成績在之外的人數(shù)為100-5-20-40-25=10.【題目點(diǎn)撥】本題主要考查樣本估計(jì)總體,由題中頻率分布直方圖,結(jié)合平均數(shù)、中位數(shù)等概念,即可求解,屬于基礎(chǔ)題型.19、(1)是偶函數(shù)(2)見解析(3)【解題分析】
(1)由奇偶函數(shù)的定義判斷;(2)由單調(diào)性的定義證明;(3)由于函數(shù)為偶函數(shù),因此只要比較與的大小,因此先確定與的大小,這就得到分類標(biāo)準(zhǔn).【題目詳解】(1)是偶函數(shù)(2)當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù);先證明當(dāng)時,是增函數(shù)證明:任取,且,則,且,,即:當(dāng)時,是增函數(shù)∵是偶函數(shù),∴當(dāng)時,是減函數(shù).(3)要比較與的大小,∵是偶函數(shù),∴只要比較與大小即可.當(dāng)時,即時,∵當(dāng)時,是增函數(shù),∴當(dāng)時,即當(dāng)時,∵當(dāng)時,是增函數(shù),∴【題目點(diǎn)撥】本題考查函數(shù)的奇偶性與單調(diào)性,掌握奇偶性與單調(diào)性的定義是解題基礎(chǔ).20、(1)見解析.(2)見解析.【解題分析】
(1)由分別是的中點(diǎn),證得,由線面平行的判定定理,可得平面,平面,再根據(jù)面面平行的判定定理,即可證得平面平面.(2)利用線面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【題目詳解】(1)在三棱柱中,因?yàn)榉謩e是的中點(diǎn),所以,根據(jù)線面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【題目點(diǎn)撥】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度風(fēng)力發(fā)電場場地平整與土地征用協(xié)議4篇
- 2025年度舊房翻新內(nèi)墻涂料施工合同樣本6篇
- 2025年度理發(fā)店員工晉升與激勵方案合同范本3篇
- 2025年度男方家庭暴力離婚賠償協(xié)議(綜合法律與心理服務(wù))
- 2025年度企業(yè)間項(xiàng)目投資借款協(xié)議范本
- 2025年度綠色金融項(xiàng)目募集資金三方監(jiān)管與風(fēng)險控制協(xié)議
- 2025年度文化場館派遣管理人員服務(wù)協(xié)議
- 2025年度防盜門加工安裝與產(chǎn)品檢測承攬合同
- 2025年度高端社區(qū)安保團(tuán)隊(duì)聘用及培訓(xùn)協(xié)議
- 2025年度深圳新能源車充電樁投資合作協(xié)議3篇
- 制造樣品生產(chǎn)作業(yè)指導(dǎo)書
- 服務(wù)經(jīng)營培訓(xùn)課件ppt 老客戶經(jīng)營綜合版
- MT/T 199-1996煤礦用液壓鉆車通用技術(shù)條件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力學(xué)性能試驗(yàn)第1部分:桌類強(qiáng)度和耐久性
- 第三方在線糾紛解決機(jī)制(ODR)述評,國際商法論文
- 公寓de全人物攻略本為個人愛好而制成如需轉(zhuǎn)載注明信息
- 第5章-群體-團(tuán)隊(duì)溝通-管理溝通
- 腎臟病飲食依從行為量表(RABQ)附有答案
- 深基坑-安全教育課件
- 園林施工管理大型園林集團(tuán)南部區(qū)域養(yǎng)護(hù)標(biāo)準(zhǔn)圖例
評論
0/150
提交評論