2024屆湖南省安仁一中、資興市立中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第1頁
2024屆湖南省安仁一中、資興市立中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第2頁
2024屆湖南省安仁一中、資興市立中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第3頁
2024屆湖南省安仁一中、資興市立中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第4頁
2024屆湖南省安仁一中、資興市立中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖南省安仁一中、資興市立中學數(shù)學高一第二學期期末學業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.兩條平行直線與間的距離等于()A. B.2 C. D.42.若tan()=2,則sin2α=()A. B. C. D.3.某人射擊一次,設事件A:“擊中環(huán)數(shù)小于4”;事件B:“擊中環(huán)數(shù)大于4”;事件C:“擊中環(huán)數(shù)不小于4”;事件D:“擊中環(huán)數(shù)大于0且小于4”,則正確的關(guān)系是A.A和B為對立事件 B.B和C為互斥事件C.C與D是對立事件 D.B與D為互斥事件4.當前,我省正分批修建經(jīng)濟適用房以解決低收入家庭住房緊張問題.已知甲、乙、丙三個社區(qū)現(xiàn)分別有低收入家庭360戶、270戶、180戶,若第一批經(jīng)濟適用房中有90套住房用于解決這三個社區(qū)中90戶低收入家庭的住房問題,先采用分層抽樣的方法決定各社區(qū)戶數(shù),則應從乙社區(qū)中抽取低收入家庭的戶數(shù)為()A.30 B.40 C.20 D.365.設,且,則()A. B. C. D.6.函數(shù)則=()A. B. C.2 D.07.傾斜角為,在軸上的截距為的直線方程是A. B. C. D.8.設,則下列不等式中正確的是()A. B.C. D.9.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.10.從一批產(chǎn)品中取出兩件產(chǎn)品,事件“至少有一件是次品”的對立事件是A.至多有一件是次品 B.兩件都是次品C.只有一件是次品 D.兩件都不是次品二、填空題:本大題共6小題,每小題5分,共30分。11.已知點A(-a,0),B(a,0)(a>0),若圓(x-2)2+(y-2)2=2上存在點C12.如圖所示,梯形中,,于,,分別是,的中點,將四邊形沿折起(不與平面重合),以下結(jié)論①面;②;③.則不論折至何位置都有_______.13.如圖是一個三角形數(shù)表,記,,…,分別表示第行從左向右數(shù)的第1個數(shù),第2個數(shù),…,第個數(shù),則當,時,______.14.平面⊥平面,,,,直線,則直線與的位置關(guān)系是___.15.函數(shù)的最大值為______.16.計算__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某工廠提供了節(jié)能降耗技術(shù)改造后生產(chǎn)產(chǎn)品過程中的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸)的幾組對照數(shù)據(jù).(1)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)試根據(jù)(1)求出的線性回歸方程,預測產(chǎn)量為(噸)的生產(chǎn)能耗.相關(guān)公式:,.18.已知圓,直線(1)求證:直線過定點;(2)求直線被圓所截得的弦長最短時的值;(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).19.已知數(shù)列滿足且,設,.(1)求;(2)求的通項公式;(3)求.20.已知圓心在軸的正半軸上,且半徑為2的圓被直線截得的弦長為.(1)求圓的方程;(2)設動直線與圓交于兩點,則在軸正半軸上是否存在定點,使得直線與直線關(guān)于軸對稱?若存在,請求出點的坐標;若不存在,請說明理由.21.如果有窮數(shù)列(m為正整數(shù))滿足,即,那么我們稱其為對稱數(shù)列.(1)設數(shù)列是項數(shù)為7的對稱數(shù)列,其中,為等差數(shù)列,且,依次寫出數(shù)列的各項;(2)設數(shù)列是項數(shù)為(正整數(shù))的對稱數(shù)列,其中是首項為50,公差為-4的等差數(shù)列.記數(shù)列的各項和為數(shù)列,當k為何值時,取得最大值?并求出此最大值;(3)對于確定的正整數(shù),寫出所有項數(shù)不超過2m的對稱數(shù)列,使得依次為該數(shù)列中連續(xù)的項.當時,求其中一個數(shù)列的前2015項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

先把直線方程中未知數(shù)的系數(shù)化為相同的,再利用兩條平行直線間的距離公式,求得結(jié)果.【題目詳解】解:兩條平行直線與間,即兩條平行直線與,故它們之間的距離為,故選:.【題目點撥】本題主要考查兩條平行直線間的距離公式應用,注意未知數(shù)的系數(shù)必需相同,屬于基礎題.2、B【解題分析】

由兩角差的正切得tan,化sin2α為tan的齊次式求解【題目詳解】tan()=2,則則sin2α=故選:B【題目點撥】本題考查兩角差的正切公式,考查二倍角公式及齊次式求值,意在考查公式的靈活運用,是基礎題3、D【解題分析】

根據(jù)互斥事件和對立事件的概念,進行判定,即可求解,得到答案.【題目詳解】由題意,A項中,事件“擊中環(huán)數(shù)等于4環(huán)”可能發(fā)生,所以事件A和B為不是對立事件;B項中,事件B和C可能同時發(fā)生,所以事件B和C不是互斥事件;C項中,事件“擊中環(huán)數(shù)等于0環(huán)”可能發(fā)生,所以事件C和D為不是對立事件;D項中,事件B:“擊中環(huán)數(shù)大于4”與事件D:“擊中環(huán)數(shù)大于0且小于4”,不可能同時發(fā)生,所以B與D為互斥事件,故選D.【題目點撥】本題主要考查了互斥事件和對立事件的概念及判定,其中解答中熟記互斥事件和對立事件的概念,準確判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.4、A【解題分析】

先求出每個個體被抽到的概率,再由乙社區(qū)的低收入家庭數(shù)量乘以每個個體被抽到的概率,即可求解【題目詳解】每個個體被抽到的概率為,乙社區(qū)由270戶低收入家庭,故應從乙中抽取低收入家庭的戶數(shù)為,故選:A【題目點撥】本題考查分層抽樣的應用,屬于基礎題5、B【解題分析】

利用兩角和差正切公式可求得;根據(jù)范圍可求得;利用兩角和差公式計算出;利用兩角和差余弦公式計算出結(jié)果.【題目詳解】,又本題正確選項:【題目點撥】本題考查利用三角恒等變換中的兩角和差的正余弦和正切公式求解三角函數(shù)值的問題,涉及到同角三角函數(shù)關(guān)系的應用;關(guān)鍵是能夠熟練應用兩角和差公式進行配湊,求得所需的三角函數(shù)值.6、B【解題分析】

先求得的值,進而求得的值.【題目詳解】依題意,,故選B.【題目點撥】本小題主要考查分段函數(shù)求值,考查運算求解能力,屬于基礎題.7、D【解題分析】試題分析:傾斜角,直線方程截距式考點:斜截式直線方程點評:直線斜率為,在y軸上的截距為,則直線方程為,求直線方程最終結(jié)果整理為一般式方程8、B【解題分析】

取,則,,只有B符合.故選B.考點:基本不等式.9、C【解題分析】

將1,2代入直線方程得到1a+2【題目詳解】將1,2代入直線方程得到1a+b=(a+b)(當a=2故答案選C【題目點撥】本題考查了直線方程,均值不等式,1的代換是解題的關(guān)鍵.10、D【解題分析】試題分析:根據(jù)對立事件的定義,至少有n個的對立事件是至多有n﹣1個,由事件A:“至少有一件次品”,我們易得結(jié)果.解:∵至少有n個的否定是至多有n﹣1個又∵事件A:“至少有一件次品”,∴事件A的對立事件為:至多有零件次品,即是兩件都不是次品.故答案為D.點評:本題考查的知識點是互斥事件和對立事件,互斥事件關(guān)鍵是要抓住不可能同時發(fā)生的要點,對立事件則要抓住有且只有一個發(fā)生,可以轉(zhuǎn)化命題的否定,集合的補集來進行求解.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】

利用參數(shù)方程假設C點坐標,表示出AC和BC,利用AC?BC=0可得到a【題目詳解】設C∴∵∠ACB=90°∴∴當sinα+∴0<a≤3本題正確結(jié)果:3【題目點撥】本題考查圓中參數(shù)范圍求解的問題,關(guān)鍵是能夠利用圓的參數(shù)方程,利用向量數(shù)量積及三角函數(shù)關(guān)系求得最值.12、①②【解題分析】

根據(jù)題意作出折起后的幾何圖形,再根據(jù)線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識即可判斷各選項的真假.【題目詳解】作出折起后的幾何圖形,如圖所示:.因為,分別是,的中點,所以是的中位線,所以.而面,所以面,①正確;無論怎樣折起,始終有,所以面,即有,而,所以,②正確;折起后,面,面,且,故與是異面直線,③錯誤.故答案為:①②.【題目點撥】本題主要考查線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識的應用,意在考查學生的直觀想象能力和邏輯推理能力,屬于基礎題.13、【解題分析】

由圖表,利用歸納法,得出,再利用疊加法,即可求解數(shù)列的通項公式.【題目詳解】由圖表,可得,,,,,可歸納為,利用疊加法可得:,故答案為.【題目點撥】本題主要考查了歸納推理的應用,以及數(shù)列的疊加法的應用,其中解答中根據(jù)圖表,利用歸納法,求得數(shù)列的遞推關(guān)系式是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.14、【解題分析】

利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【題目詳解】在長方體中,設平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因為,由線面垂直的性質(zhì)定理,可得.【題目點撥】空間中點、線、面的位置關(guān)系問題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進行求解.15、【解題分析】

設,,,則,,可得,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【題目詳解】解:函數(shù),設,,則,,,,故當,即時,函數(shù),故故答案為:;【題目點撥】本題主要考查求函數(shù)的值域,正弦函數(shù)的定義域和值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎題.16、【解題分析】

采用分離常數(shù)法對所給極限式變形,可得到極限值.【題目詳解】.【題目點撥】本題考查分離常數(shù)法求極限,難度較易.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)可以預測產(chǎn)量為(噸)的生產(chǎn)能耗為(噸)【解題分析】

(1)根據(jù)表格中的數(shù)據(jù),求出,,,代入回歸系數(shù)的公式可求得,再根據(jù)回歸直線過樣本中心點即可求解.由(1)將代入即可求解.【題目詳解】(1)由題意,根據(jù)表格中的數(shù)據(jù),求得,,,,代入回歸系數(shù)的公式,求得,則,故線性回歸方程為.(2)由(1)可知,當時,,則可以預測產(chǎn)量為(噸)的生產(chǎn)能耗為(噸).【題目點撥】本題考查了線性回歸方程,需掌握回歸直線過樣本中心點這一特征,考查了學生的計算能力,屬于基礎題.18、(1)直線過定點(2).(3)在直線上存在定點,使得為常數(shù).【解題分析】分析:(Ⅰ)利用直線系方程的特征,直接求解直線l過定點A的坐標.(Ⅱ)當AC⊥l時,所截得弦長最短,由題知,r=2,求出AC的斜率,利用點到直線的距離,轉(zhuǎn)化求解即可.(Ⅲ)由題知,直線MC的方程為,假設存在定點N滿足題意,則設P(x,y),,得,且,求出λ,然后求解比值.詳解:(Ⅰ)依題意得,令且,得直線過定點(Ⅱ)當時,所截得弦長最短,由題知,,得,由得(Ⅲ)法一:由題知,直線的方程為,假設存在定點滿足題意,則設,,得,且整理得,上式對任意恒成立,且解得,說以(舍去,與重合),綜上可知,在直線上存在定點,使得為常數(shù)點睛:過定點的直線系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通過兩直線l1∶A1x+B1y+C1=0與l2∶A2x+B2y+C2=0交點的直線系,而這交點即為直線系所通過的定點.19、(1),,,;(1),;(3).【解題分析】

(1)依次代入計算,可求得;(1)歸納出,并用數(shù)學歸納法證明;(3)用裂項相消法求和,然后求極限.【題目詳解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)歸納:,下面用數(shù)學歸納法證明:1°n=1,n=1時,由(1)知成立,1°假設n=k(k>1)時,結(jié)論成立,即bk=1k1,則n=k+1時,ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1時結(jié)論成立,∴對所有正整數(shù)n,bn=1n1.(3)由(1)知n1時,,∴,.【題目點撥】本題考查用歸納法求數(shù)列的通項公式,考查用裂項相消法求數(shù)列的和,考查數(shù)列的極限.在求數(shù)列通項公式時,可以根據(jù)已知的遞推關(guān)系求出數(shù)列的前幾項,然后歸納出通項公式,并用數(shù)學歸納法證明,這對學生的歸納推理能力有一定的要求,這也就是我們平常所學的從特殊到一般的推理方法.20、(1)(2)當點為時,直線與直線關(guān)于軸對稱,詳見解析【解題分析】

(1)設圓的方程為,由垂徑定理求得弦長,再由弦長為可求得,從而得圓的方程;(2)假設存在定點,使得直線與直線關(guān)于軸對稱,則,同時設,直線方程代入圓方程后用韋達定理得,即為,代入可求得,說明存在.【題目詳解】(1)設圓的方程為:圓心到直線的距離根據(jù)垂徑定理得,,解得,,故圓的方程為(2)假設存在定點,使得直線與直線關(guān)于軸對稱,那么,設聯(lián)立得:由.故存在,當點為時,直線與直線關(guān)于軸對稱.【題目點撥】本題考查圓的標準方程,考查直線與圓的位置關(guān)系.在解決存在性命題時,一般都是假設存在,然后根據(jù)已知去推理求解.象本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論