yale的知識管理講座4_第1頁
yale的知識管理講座4_第2頁
yale的知識管理講座4_第3頁
yale的知識管理講座4_第4頁
yale的知識管理講座4_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Introductionto

GameTheoryYaleBraunstein

June2003GeneralapproachBriefHistoryofGameTheoryPayoffMatrixTypesofGamesBasicStrategiesEvolutionaryConceptsLimitationsandProblemsBriefHistoryofGameTheory1913-E.Zermeloprovidesthefirsttheoremofgametheory;assertsthatchessisstrictlydetermined1928-JohnvonNeumannprovestheminimaxtheorem1944-JohnvonNeumann&OskarMorgensternwrite"TheoryofGamesandEconomicBehavior〞1950-1953-JohnNashdescribesNashequilibriumRationalityAssumptions:humansarerationalbeingshumansalwaysseekthebestalternativeinasetofpossiblechoicesWhyassumerationality?narrowdowntherangeofpossibilitiespredictabilityUtilityTheoryUtilityTheorybasedon:rationalitymaximizationofutilitymaynotbealinearfunctionofincomeorwealthItisaquantificationofaperson'spreferenceswithrespecttocertainobjects.WhatisGameTheory?GametheoryisastudyofhowtomathematicallydeterminethebeststrategyforgivenconditionsinordertooptimizetheoutcomeGameTheoryFindingacceptable,ifnotoptimal,strategiesinconflictsituations.AbstractionofrealcomplexsituationGametheoryishighlymathematicalGametheoryassumesallhumaninteractionscanbeunderstoodandnavigatedbypresumptions.Whyisgametheoryimportant?Allintelligentbeingsmakedecisionsallthetime.AIneedstoperformthesetasksasaresult.Helpsustoanalyzesituationsmorerationallyandformulateanacceptablealternativewithrespecttocircumstance.Usefulinmodelingstrategicdecision-makingGamesagainstopponentsGamesagainst"nature"TypesofGamesSequentialvs.SimultaneousmovesSinglePlayvs.IteratedZerovs.non-zerosum Perfectvs.ImperfectinformationCooperativevs.conflict Zero-SumGamesThesumofthepayoffsremainsconstantduringthecourseofthegame.TwosidesinconflictBeingwellinformedalwayshelpsaplayerNon-zeroSumGameThesumofpayoffsisnotconstantduringthecourseofgameplay.Playersmayco-operateorcompeteBeingwellinformedmayharmaplayer.GamesofPerfectInformationTheinformationconcerninganopponent’smoveiswellknowninadvance.Allsequentialmovegamesareofthistype.ImperfectInformationPartialornoinformationconcerningtheopponentisgiveninadvancetotheplayer’sdecision.Imperfectinformationmaybediminishedovertimeifthesamegamewiththesameopponentistoberepeated.KeyAreaofInterestchancestrategyNon-zeroSumImperfectInformationMatrixNotationNotes: PlayerI'sstrategyAmaybedifferentfromPlayerII's. P2canbeomittedifzero-sumgamePrisoner’sDilemma&

OtherfamousgamesAsampleofothergames: Marriage Disarmament(mygeneralsare

moreirrationalthanyours)Prisoner’sDilemma10,10BlameDon'tBlameDon't20,00,201,1Prisoner1Prisoner2Notes: Higherpayoffs(longersentences)arebad. Non-cooperativeequilibriumJointmaximumNCEJt.max.GamesofConflictTwosidescompetingagainsteachotherUsuallycausedbycompletelackofinformationabouttheopponentorthegameCharacteristicofzero-sumgamesGamesofCo-operationPlayersmayimprovepayoffthroughcommunicatingformingbindingcoalitions&agreementsdonotapplytozero-sumgamesPrisoner’sDilemmawithCooperationPrisoner’sDilemmawithIterationInfinitenumberofiterationsFearofretaliationFixednumberofiterationDominoeffectBasicStrategies1.Planaheadandlookback2.Useadominatingstrategyifpossible3.Eliminateanydominatedstrategies4.Lookforanyequilibrium5.MixupthestrategiesPlanaheadandlookbackStrategy2Strategy1150100025Strategy1Strategy2-10YouOpponentIfyouhaveadominatingstrategy,

useit Strategy2Strategy1150100025Strategy1Strategy2-10YouOpponentUsestrategy1EliminateanydominatedstrategyStrategy2Strategy1150100025Strategy1Strategy2-10YouOpponentStrategy3-15160Eliminatestrategy2asit’sdominatedbystrategy1LookforanyequilibriumDominatingEquilibriumMinimaxEquilibriumNashEquilibriumMaximin&MinimaxEquilibriumMinimax-tominimizethemaximumloss(defensive)Maximin-tomaximizetheminimumgain(offensive)Minimax=MaximinMaximin&MinimaxEquilibriumStrategiesStrategy2Strategy1150100025Strategy1Strategy2-10YouOpponentStrategy3-15160Min1000150-10-15160MaxDefinition:NashEquilibrium“Ifthereisasetofstrategieswiththepropertythatnoplayercanbenefitbychangingherstrategywhiletheotherplayerskeeptheirstrategiesunchanged,thenthatsetofstrategiesandthecorrespondingpayoffsconstitutetheNashEquilibrium.“Source:/economics/mccain/game/game.htmlIsthisaNashEquilibrium?Strategy2Strategy1150100025Strategy1Strategy2-10YouOpponentStrategy3-15160Min1000150-10-15160MaxCosttopressbutton=2unitsWhenbuttonispressed,foodgiven=10unitsBoxedPigsExample5,1PressWaitPressWait9,-14,40,0LittlePigBigPigDecisions,decisions...Timefor"real-life"decisionmakingHolmes&Moriarityin"TheFinalProblem"Whatwouldyoudo…IfyouwereHolmes?IfyouwereMoriarity?Possiblyinterestingdigressions?WhywasMoriaritysoevil?Whatreallyhappened?Whatdowemeanbyreality?Whatchangedthereality?MixedStrategySafe2Safe1$0$10,000$100,000Safe1Safe2$0MixedStrategySolutionThePayoffMatrix

forHolmes&MoriarityPlayer#1Player#2Strategy#1Strategy#2Strategy#1Strategy#2Payoff(1,1)Payoff(1,2)Payoff(2,1)Payoff(2,2)CanterburyCanterburyDoverDover10050HolmesMoriartyEvolutionaryGameTheoryNaturalselectionreplacesrationalbehaviorSurvivalofthefittestWhyuseevolutiontodetermineastrategy?Hawk/DoveGameEvolutionaryStableStrategyIntroducedbyMaynardSmithandPrice(1973)Strategybecomesstablethroughoutthepopulation

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論