




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆天津市河西區(qū)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓與直線的位置關(guān)系為()A.相離 B.相切C.相交 D.以上都有可能2.棱長為2的正方體的內(nèi)切球的體積為()A. B. C. D.3.甲、乙兩個不透明的袋中各有5個僅顏色不同的球,其中甲袋中有3個紅球,2個白球,乙袋中有2個紅球,3個白球,現(xiàn)從兩袋中各隨機取一球,則兩球不同顏色的概率為()A. B. C. D.4.如圖,在三棱柱中,側(cè)棱垂直于底面,底面是邊長為2的正三角形,側(cè)棱長為3,則與平面所成的角為()A. B. C. D.5.在中,角,,所對的邊分別為,,,若,,則等于()A.1 B.2 C. D.46.在等差數(shù)列中,若,,則()A. B.0 C.1 D.67.如圖所示,等邊的邊長為2、為的中點,且也是等邊三角形,若以點為中心按逆時針方向旋轉(zhuǎn)后到達的位置,則在轉(zhuǎn)動過程中的取值范圍是()A. B. C. D.8.下圖是實現(xiàn)秦九韶算法的一個程序框圖,若輸入的,,依次輸入的為2,2,5,則輸出的()A.10 B.12 C.60 D.659.已知的三個內(nèi)角之比為,那么對應(yīng)的三邊之比等于()A. B. C. D.10.已知等差數(shù)列中,,.若公差為某一自然數(shù),則n的所有可能取值為()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,70二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,E,F(xiàn)分別是邊長為1的正方形的邊BC,CD的中點,將其沿AE,AF,EF折起使得B,D,C三點重合.則所圍成的三棱錐的體積為___________.12.設(shè)函數(shù)滿足,當(dāng)時,,則=________.13.已知求______________.14.命題“,”是________命題(選填“真”或“假”).15.有五條線段,長度分別為2,3,5,7,9,從這五條線段中任取三條,則所取三條線段能構(gòu)成一個三角形的概率為___________.16.在平面直角坐標(biāo)系中,點在第二象限,,,則向量的坐標(biāo)為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,底面,,,,分別為的中點,為側(cè)棱上的動點(Ⅰ)求證:平面平面;(Ⅱ)若為線段的中點,求證:平面;(Ⅲ)試判斷直線與平面是否能夠垂直.若能垂直,求的值;若不能垂直,請說明理由18.已知數(shù)列滿足:.(1)若為等差數(shù)列,求的通項公式;(2)若單調(diào)遞增,求的取值范圍;19.如圖,在四棱錐中,底面是矩形,平面,,.(1)求直線與平面所成角的正弦值;(2)若點分別在上,且平面,試確定點的位置20.已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球n個.若從袋子中隨機抽取1個小球,取到標(biāo)號為2的小球的概率是.(1)求n的值;(2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.①記“”為事件A,求事件A的概率;②在區(qū)間內(nèi)任取2個實數(shù),求事件“恒成立”的概率.21.已知函數(shù),求其定義域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
由直線方程可確定其恒過的定點,由點與圓的位置關(guān)系的判定方法知該定點在圓內(nèi),則可知直線與圓相交.【題目詳解】由得:直線恒過點在圓內(nèi)部直線與圓相交故選:【題目點撥】本題考查直線與圓位置關(guān)系的判定,涉及到直線恒過定點的求解、點與圓的位置關(guān)系的判定,屬于??碱}型.2、C【解題分析】
根據(jù)正方體的內(nèi)切球的直徑與正方體的棱長相等可得結(jié)果.【題目詳解】因為棱長為2的正方體的內(nèi)切球的直徑與正方體的棱長相等,所以直徑,內(nèi)切球的體積為,故選:C.【題目點撥】本題主要考查正方體的內(nèi)切球的體積,利用正方體的內(nèi)切球的直徑與正方體的棱長相等求出半徑是解題的關(guān)鍵.3、D【解題分析】
現(xiàn)從兩袋中各隨機取一球,基本事件總數(shù),兩球不同顏色包含的基本事件個數(shù),由此能求出兩球不同顏色的概率.【題目詳解】甲、乙兩個不透明的袋中各有5個僅顏色不同的球,其中甲袋中有3個紅球、2個白球,乙袋中有2個紅球、3個白球,現(xiàn)從兩袋中各隨機取一球,基本事件總數(shù),兩球不同顏色包含的基本事件個數(shù),則兩球不同顏色的概率為.故選.【題目點撥】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.4、A【解題分析】
取的中點,連接、,作,垂足為點,證明平面,于是得出直線與平面所成的角為,然后利用銳角三角函數(shù)可求出.【題目詳解】如下圖所示,取的中點,連接、,作,垂足為點,是邊長為的等邊三角形,點為的中點,則,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直線與平面所成的角為,易知,在中,,,,,,即直線與平面所成的角為,故選A.【題目點撥】本題考查直線與平面所成角的計算,求解時遵循“一作、二證、三計算”的原則,一作的是過點作面的垂線,有時也可以通過等體積法計算出點到平面的距離,利用該距離與線段長度的比值作為直線與平面所成角的正弦值,考查計算能力與推理能力,屬于中等題.5、D【解題分析】
直接利用正弦定理得到,帶入化簡得到答案.【題目詳解】正弦定理:即:故選D【題目點撥】本題考查了正弦定理,意在考查學(xué)生的計算能力.6、C【解題分析】
根據(jù)等差數(shù)列性質(zhì)得到答案.【題目詳解】等差數(shù)列中,若,【題目點撥】本題考查了等差數(shù)列的性質(zhì),屬于簡單題.7、D【解題分析】
設(shè),,則,則,將其展開,運用向量的數(shù)量積的定義,化簡得到,再由余弦函數(shù)的性質(zhì),即可得到范圍.【題目詳解】設(shè),,則,則,由于,則,則.故選:D【題目點撥】本題考查平面向量的數(shù)量積的定義,考查三角函數(shù)的化簡和求最值,考查運算能力,屬于中檔題.8、D【解題分析】,,判斷否,,,判斷否,,,判斷是,輸出.故選.9、D【解題分析】∵已知△ABC的三個內(nèi)角之比為,∴有,再由,可得,故三內(nèi)角分別為.再由正弦定理可得三邊之比,故答案為點睛:本題考查正弦定理的應(yīng)用,結(jié)合三角形內(nèi)角和等于,很容易得出三個角的大小,利用正弦定理即出結(jié)果10、B【解題分析】試題分析:由等差數(shù)列的通項公式得,公差,所以,可能為,的所有可能取值為選.考點:1.等差數(shù)列及其通項公式;2.數(shù)的整除性.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
根據(jù)折疊后不變的垂直關(guān)系,結(jié)合線面垂直判定定理可得到為三棱錐的高,由此可根據(jù)三棱錐體積公式求得結(jié)果.【題目詳解】設(shè)點重合于點,如下圖所示:,,又平面,平面,即為三棱錐的高故答案為:【題目點撥】本題考查立體幾何折疊問題中的三棱錐體積的求解問題,處理折疊問題的關(guān)鍵是能夠明確折疊后的不變量,即不變的垂直關(guān)系和長度關(guān)系.12、【解題分析】
由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出結(jié)果.【題目詳解】∵函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案為:.【題目點撥】本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.13、23【解題分析】
直接利用數(shù)量積的坐標(biāo)表示求解.【題目詳解】由題得.故答案為23【題目點撥】本題主要考查平面向量的數(shù)量積的計算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.14、真【解題分析】當(dāng)時,成立,即命題“,”為真命題.15、【解題分析】
列出所有的基本事件,并找出事件“所取三條線段能構(gòu)成一個三角形”所包含的基本事件,再利用古典概型的概率公式計算出所求事件的概率.【題目詳解】所有的基本事件有:、、、、、、、、、,共個,其中,事件“所取三條線段能構(gòu)成一個三角形”所包含的基本事件有:、、,共個,由古典概型的概率公式可知,事件“所取三條線段能構(gòu)成一個三角形”的概率為,故答案為.【題目點撥】本題考查古典概型的概率的計算,解題的關(guān)鍵就是列舉基本事件,常見的列舉方法有:枚舉法和樹狀圖法,列舉時應(yīng)遵循不重不漏的基本原則,考查計算能力,屬于中等題.16、【解題分析】
由三角函數(shù)的定義求出點的坐標(biāo),然后求向量的坐標(biāo).【題目詳解】設(shè)點,由三角函數(shù)的定義有,得,,得,所以,所以故答案為:【題目點撥】本題考查三角函數(shù)的定義的應(yīng)用和已知點的坐標(biāo)求向量坐標(biāo),屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)直線BC1與平面APM不能垂直,詳見解析【解題分析】
(Ⅰ)由等腰三角形三線合一得;由線面垂直性質(zhì)可得;根據(jù)線面垂直的判定定理知平面;由面面垂直判定定理證得結(jié)論;(Ⅱ)取中點,可證得,;利用線面平行判定定理和面面平行判定定理可證得平面平面;根據(jù)面面平行性質(zhì)可證得結(jié)論;(Ⅲ)假設(shè)平面,由線面垂直性質(zhì)可知,利用相似三角形得到,從而解得長度,可知滿足垂直關(guān)系時,不在棱上,則假設(shè)錯誤,可得到結(jié)論.【題目詳解】(Ⅰ),為中點平面,平面又平面平面,平面又平面平面平面(Ⅱ)取中點,連接分別為的中點且四邊形為平行四邊形又平面,平面平面分別為的中點又分別為的中點又平面,平面平面平面,平面平面又平面平面(Ⅲ)假設(shè)平面,由平面得:設(shè),當(dāng)時,∽由已知得:,,,解得:假設(shè)錯誤直線與平面不能垂直【題目點撥】本題考查立體幾何中面面垂直、線面平行關(guān)系的證明、存在性問題的求解;涉及到線面垂直的判定與性質(zhì)、線面平行的判定、面面平行的判定與性質(zhì)定理的應(yīng)用;處理存在性問題時,常采用假設(shè)法,通過假設(shè)成立構(gòu)造方程,判斷是否滿足已知要求,從而得到結(jié)論.18、(1)(2)【解題分析】
(1)設(shè)出的通項公式,根據(jù)計算出對應(yīng)的首項和公差,即可求解出通項公式;(2)根據(jù)條件得到,得到的奇數(shù)項成等差數(shù)列,的偶數(shù)項也成等差數(shù)列,根據(jù)單調(diào)遞增列出關(guān)于的不等式,求解出范圍即可.【題目詳解】(1)設(shè),所以,所以,所以,所以;(2)因為,所以,所以,又因為,所以,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,因為單調(diào)遞增,所以,所以,所以.【題目點撥】本題考查等差數(shù)列的基本量求解以及根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,難度一般.(1)已知數(shù)列的類型和數(shù)列的遞推公式求解數(shù)列通項公式時,可采用設(shè)出數(shù)列通項公式的形式,然后根據(jù)遞推關(guān)系求解出數(shù)列通項公式中的基本量;(2)數(shù)列的單調(diào)性可通過與的大小關(guān)系來判斷.19、(1);(2)M為AB的中點,N為PC的中點【解題分析】
(1)由題意知,AB,AD,AP兩兩垂直.以為正交基底,建立空間直角坐標(biāo)系,求平面PCD的一個法向量為,由空間向量的線面角公式求解即可;(2)設(shè),利用平面PCD,所以∥,得到的方程,求解即可確定M,N的位置【題目詳解】(1)由題意知,AB,AD,AP兩兩垂直.以為正交基底,建立如圖所示的空間直角坐標(biāo)系,則從而設(shè)平面PCD的法向量則即不妨取則.所以平面PCD的一個法向量為.設(shè)直線PB與平面PCD所成角為所以即直線PB與平面PCD所成角的正弦值為.(2)設(shè)則設(shè)則而所以.由(1)知,平面PCD的一個法向量為,因為平面PCD,所以∥.所以解得,.所以M為AB的中點,N為PC的中點.【題目點撥】本題考查空間向量的應(yīng)用,求線面角,探索性問題求點位置,熟練掌握空間向量的運算是關(guān)鍵,是基礎(chǔ)題20、(1);(2)P=.【解題分析】
試題分析:(1)依題意共有小球n+2個,標(biāo)號為2的小球有n個,從袋子中隨機抽取1個小球,取到標(biāo)號為2的小球的概率為,解得n=2;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)購房轉(zhuǎn)讓合同范本
- 個人轉(zhuǎn)讓德文合同范本
- 分包混凝土合同范本
- 買賣車位轉(zhuǎn)讓合同范本
- 包子工用工合同范本
- 創(chuàng)業(yè)加盟合同范本
- 廣西買房合同范本
- 出國勞務(wù)外派合同范本
- 勞動合同范本工資
- 出租包車合同范本
- 2022-2023學(xué)年湖南省長沙市統(tǒng)招專升本語文模擬練習(xí)題三及答案
- 社會救助法課件
- 1.裝配式建筑概述(裝配式混凝土結(jié)構(gòu)施工技術(shù))
- 第七講+漢字字音
- 新零件的成熟保障MLA
- 【基于杜邦分析法的企業(yè)盈利能力研究國內(nèi)外文獻綜述4000字】
- 初中語文七下-上下句默寫
- 《董存瑞舍身炸碉堡》PPT課件新
- 新川教版信息技術(shù)六年級下冊全冊教案
- 第20章補充芯片粘接技術(shù)
- 旅行社運營實務(wù)電子課件 5.1 旅行社電子商務(wù)概念
評論
0/150
提交評論