版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
重慶市南開中學(xué)2024屆數(shù)學(xué)高一下期末達(dá)標(biāo)測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則()A. B. C.或 D.2.設(shè),則使函數(shù)的定義域是,且為偶函數(shù)的所有的值是()A.0,2 B.0,-2 C. D.23.設(shè)等差數(shù)列,則等于()A.120 B.60 C.54 D.1084.函數(shù)是().A.周期為的偶函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為奇函數(shù)5.把函數(shù)的圖象經(jīng)過變化而得到的圖象,這個變化是()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位6.如圖,已知平行四邊形,,則()A. B.C. D.7.棱長為2的正方體的內(nèi)切球的體積為()A. B. C. D.8.已知,,,,則()A. B.C. D.9.設(shè)偶函數(shù)定義在上,其導(dǎo)數(shù)為,當(dāng)時,,則不等式的解集為()A. B.C. D.10.如圖所示的程序框圖,若執(zhí)行的運算是,則在空白的執(zhí)行框中,應(yīng)該填入A.B.C.D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),的值域為________12.函數(shù)的最小正周期為__________.13.已知等差數(shù)列{an}的公差為d,且d≠0,其前n項和為Sn,若滿足a1,a2,a5成等比數(shù)列,且S3=9,則d=_____,Sn=_____.14.已知圓是圓上的一條動直徑,點是直線上的動點,則的最小值是____.15.若角是第四象限角,則角的終邊在_____________16.設(shè)數(shù)列的前項和,若,,則的通項公式為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,.(1)若,求的值;(2)設(shè),若恒成立,求的取值范圍.18.已知等差數(shù)列滿足.(1)求的通項公式;(2)設(shè)等比數(shù)列滿足,求的前項和.19.已知向量(cosx+sinx,1),(sinx,),函數(shù).(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間.20.函數(shù).(1)求函數(shù)的圖象的對稱軸方程;(2)當(dāng)時,不等式恒成立,求m的取值范圍.21.已知函數(shù).(1)若,求函數(shù)的值;(2)求函數(shù)的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
利用誘導(dǎo)公式變形,再化弦為切求解.【題目詳解】由誘導(dǎo)公式化簡得,又,所以原式.故選D【題目點撥】本題考查三角函數(shù)的化簡求值,考查倍角公式及誘導(dǎo)公式的應(yīng)用,也考查了化弦為切的思想,屬于基礎(chǔ)題.2、D【解題分析】
根據(jù)冪函數(shù)的性質(zhì),結(jié)合題中條件,即可得出結(jié)果.【題目詳解】若函數(shù)的定義域是,則;又函數(shù)為偶函數(shù),所以只能使偶數(shù);因為,所以能取的值為2.故選D【題目點撥】本題主要考查冪函數(shù)性質(zhì)的應(yīng)用,熟記冪函數(shù)的性質(zhì)即可,屬于常考題型.3、C【解題分析】
題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質(zhì)解決。【題目詳解】,選C.【題目點撥】題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質(zhì)解決。也可將等式全部化為的表達(dá)式,整體代換計算出4、B【解題分析】因,故是奇函數(shù),且最小正周期是,即,應(yīng)選答案B.點睛:解答本題時充分運用題設(shè)條件,先借助二倍角的余弦公式的變形,將函數(shù)的形式進(jìn)行化簡,然后再驗證函數(shù)的奇偶性與周期性,從而獲得問題的答案.5、B【解題分析】
試題分析:,與比較可知:只需將向右平移個單位即可考點:三角函數(shù)化簡與平移6、A【解題分析】
根據(jù)平面向量的加法運算,即可得到本題答案.【題目詳解】由題,得.故選:A【題目點撥】本題主要考查平面向量的加法運算,屬基礎(chǔ)題.7、C【解題分析】
根據(jù)正方體的內(nèi)切球的直徑與正方體的棱長相等可得結(jié)果.【題目詳解】因為棱長為2的正方體的內(nèi)切球的直徑與正方體的棱長相等,所以直徑,內(nèi)切球的體積為,故選:C.【題目點撥】本題主要考查正方體的內(nèi)切球的體積,利用正方體的內(nèi)切球的直徑與正方體的棱長相等求出半徑是解題的關(guān)鍵.8、C【解題分析】
分別求出的值再帶入即可.【題目詳解】因為,所以因為,所以所以【題目點撥】本題考查兩角差的余弦公式.屬于基礎(chǔ)題.9、C【解題分析】構(gòu)造函數(shù),則,所以當(dāng)時,,單調(diào)遞減,又在定義域內(nèi)為偶函數(shù),所以在區(qū)間單調(diào)遞增,單調(diào)遞減,又等價于,所以解集為.故選C.點睛:本題考查導(dǎo)數(shù)的構(gòu)造法應(yīng)用.本題中,由條件構(gòu)造函數(shù),結(jié)合函數(shù)性質(zhì),可得抽象函數(shù)在區(qū)間單調(diào)遞增,單調(diào)遞減,結(jié)合函數(shù)草圖,即可解得不等式解集.10、D【解題分析】試題分析:解:運行第一次:,不成立;運行第二次:,不成立;運行第三次:,不成立;運行第四次:,不成立;運行第四次:,成立;輸出所以應(yīng)選D.考點:循環(huán)結(jié)構(gòu).二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
先求的值域,再求的值域即可.【題目詳解】因為,故,故.故答案為:【題目點撥】本題主要考查了余弦函數(shù)的值域與反三角函數(shù)的值域等,屬于基礎(chǔ)題型.12、【解題分析】
用輔助角公式把函數(shù)解析式化成正弦型函數(shù)解析式的形式,最后利用正弦型函數(shù)的最小正周期的公式求出最小正周期.【題目詳解】,函數(shù)的最小正周期為.【題目點撥】本題考查了輔助角公式,考查了正弦型函數(shù)最小正周期公式,考查了數(shù)學(xué)運算能力.13、2n2.【解題分析】
由已知列關(guān)于首項與公差的方程組,求解可得首項與公差,再由等差數(shù)列的前項和求解.【題目詳解】由題意,有,即,解得,所以.故答案為:,.【題目點撥】本題考查等差數(shù)列的通項公式與前項和,考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.14、【解題分析】
由題意得,==﹣=,即可求的最小值.【題目詳解】圓,得,則圓心C(1,2),半徑R=,如圖可得:==﹣=,點是直線上,所以=()2=,∴的最小值是=.故答案為:.【題目點撥】本題考查了向量的數(shù)量積、轉(zhuǎn)化和數(shù)形結(jié)合的思想,點到直線的距離,屬于中檔題.15、第二或第四象限【解題分析】
根據(jù)角是第四象限角,寫出角的范圍,即可求出角的終邊所在位置.【題目詳解】因為角是第四象限角,所以,即有,當(dāng)為偶數(shù)時,角的終邊在第四象限;當(dāng)為奇數(shù)時,角的終邊在第二象限,故角的終邊在第二或第四象限.【題目點撥】本題主要考查象限角的集合的應(yīng)用.16、【解題分析】
已知求,通常分進(jìn)行求解即可?!绢}目詳解】時,,化為:.時,,解得.不滿足上式.∴數(shù)列在時成等比數(shù)列.∴時,.∴.故答案為:.【題目點撥】本題主要考查了數(shù)列通項式的求法:求數(shù)列通項式常用的方法有累加法、定義法、配湊法、累乘法等。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)由,轉(zhuǎn)化為,利用弦化切的思想得出的值,從而求出的值;(2)由,轉(zhuǎn)化為,然后利用平面向量數(shù)量積的坐標(biāo)運算律和輔助角公式與函數(shù)的解析式進(jìn)行化簡,并求出在區(qū)間的最大值,即可得出實數(shù)的取值范圍.【題目詳解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,當(dāng)時,,取得最大值:,又恒成立,即,故.【題目點撥】本題考查平面向量數(shù)量積的坐標(biāo)運算,考查三角函數(shù)的最值,在求解含參函數(shù)的不等式恒成立問題,可以利用參變量分離法,轉(zhuǎn)化為函數(shù)的最值來求解,考查轉(zhuǎn)化與化歸數(shù)學(xué)思想,考查計算能力,屬于中等題.18、(1)(2)【解題分析】
(1)根據(jù)基本元的思想,將已知條件轉(zhuǎn)化為的形式,列方程組,解方程組可求得的值.并由此求得數(shù)列的通項公式.(2)利用(1)的結(jié)論求得的值,根據(jù)基本元的思想,,將其轉(zhuǎn)化為的形式,由此求得的值,根據(jù)等比數(shù)列前項和公式求得數(shù)列的前項和.【題目詳解】解:(1)設(shè)的公差為,則由得,故的通項公式,即.(2)由(1)得.設(shè)的公比為,則,從而,故的前項和.【題目點撥】本小題主要考查利用基本元的思想解有關(guān)等差數(shù)列和等比數(shù)列的問題,屬于基礎(chǔ)題.19、(1)θ(2)最小正周期為π;單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z【解題分析】
(1)計算平面向量的數(shù)量積得出函數(shù)f(x)的解析式,求出f(θ)=3時θ的值;
(2)根據(jù)函數(shù)f(x)的解析式,求出它的最小正周期和單調(diào)遞增區(qū)間.【題目詳解】(1)向量(cosx+sinx,1),(sinx,),函數(shù)=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3時,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函數(shù)f(x)=sin(2x)+2,它的最小正周期為Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z.【題目點撥】本題考查了平面向量的數(shù)量積計算問題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.20、(1),(2)【解題分析】
(1)首先利用二倍角公式及兩角和差的正弦公式化簡得到,再根據(jù)正弦函數(shù)的性質(zhì)求出函數(shù)的對稱軸;(2)由,求出的值域,設(shè),則.則當(dāng)時,不等式恒
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年幼兒園大班上學(xué)期工作計劃標(biāo)準(zhǔn)模板(八篇)
- 二零二五年度大型園林工程苗木供應(yīng)及種植勞務(wù)合同4篇
- 年度井下多功能測振儀產(chǎn)業(yè)分析報告
- 2025年度大型體育賽事策劃與執(zhí)行個人雇傭合同4篇
- 二零二五年度仿古面磚采購及修復(fù)服務(wù)合同4篇
- 2025年路燈安裝工程環(huán)境保護(hù)及污染防治合同3篇
- 船舶貨運技術(shù)課程設(shè)計
- 二零二五年度高空作業(yè)風(fēng)險評估免責(zé)協(xié)議3篇
- 班級文化建設(shè)【共享-】
- 油松植苗施工方案
- 2024工貿(mào)企業(yè)重大事故隱患判定標(biāo)準(zhǔn)解讀
- 中國聯(lián)合網(wǎng)絡(luò)通信有限公司招聘筆試題庫2024
- 【社會工作介入精神障礙社區(qū)康復(fù)問題探究的文獻(xiàn)綜述5800字】
- 節(jié)前停工停產(chǎn)與節(jié)后復(fù)工復(fù)產(chǎn)安全注意事項課件
- 設(shè)備管理績效考核細(xì)則
- 中國人民銀行清算總中心直屬企業(yè)2023年招聘筆試上岸歷年典型考題與考點剖析附帶答案詳解
- (正式版)SJT 11449-2024 集中空調(diào)電子計費信息系統(tǒng)工程技術(shù)規(guī)范
- 人教版四年級上冊加減乘除四則混合運算300題及答案
- 合成生物學(xué)技術(shù)在生物制藥中的應(yīng)用
- 消化系統(tǒng)疾病的負(fù)性情緒與心理護(hù)理
- 高考語文文學(xué)類閱讀分類訓(xùn)練:戲劇類(含答案)
評論
0/150
提交評論