版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
模擬性思考題
Rousseau:DiscourseontheOriginandBasisofEqualityamongMen:Ifagroupofhunterssetouttotakeastag,theyarefullyawarethattheywouldallhavetoremainfaithfullyattheirpostsinordertosucceed;butifaharehappenstopassnearoneofthem,therecanbenodoubtthathepursueditwithoutqualm,andthatoncehehadcaughthisprey,hecaredverylittlewhetherornothehadmadehiscompanionmisstheirs.0、策略性思維的基本概念(一)策略性思維的意義策略性思維:人類的內(nèi)在優(yōu)勢策略性思維的兩面性策略性思維的不可回避性策略性思維:基本的生活技巧0、策略性思維的基本概念(二)策略性博弈實例例一:西班牙叛亂Roman:PompeyandPiusRebellion:SertoriusandHirtuleius0、策略性思維的基本概念實例二:囚徒困境(Prisoner’sDilemma)實例三:性別戰(zhàn)(theBattleoftheSexes)實例四:鷹鴿博弈(theHawkandDove)實例五:猜硬幣博弈(Matchingpennies)實例六:齊威王田忌賽馬實例七:小偷與守衛(wèi)博弈實例八:智豬博弈0、策略性思維的基本概念(三)策略性思維的系統(tǒng)性研究:博弈論的歷史發(fā)展(四)博弈論的性質(zhì)博弈論是對理性、智能決策者之間沖突與合作的模型研究,是尋求決策者最佳反應(yīng)策略的一種理論體系0、策略性思維的基本概念(五)博弈論的基本假設(shè)個人主義理性智能共同知識0、策略性思維的基本概念(六)策略性思維的基本框架
決策與博弈
博弈的基本類型1、同時行動或序慣行動(arethemovesinthegamesequentialorsimultaneous)2、沖突還是合作(aretheplayers’interestsintotalconflictoristheresomecommonality)3、一次博弈還重復(fù)博弈,參與人是否變化(isthegameplayedonceorrepeatedly,andwiththesameorchangingopponents)0、策略性思維的基本概念
博弈的基本類型4、信息是否完備和完全(dotheplayershavefullofequalinformation)5、規(guī)則是否可變(aretherulesofthegamefixedormanipulateable)6、協(xié)議是否可實施(Areagreementstocooperateenforceable)
博弈論的運用解釋(Explanation)預(yù)測(prediction)建議(Adviceorprescription)博弈分類(Categories)一、完備信息的同時行動博弈(StaticGamesofCompleteInformation
)二、完全信息的序慣行動博弈(DynamicGamesofCompleteInformation
)三、不完全信息的同時行動博弈(StaticGamesofIncompleteInformation
)四、不完全信息的序慣行動博弈(DynamicGamesofIncompleteInformation
)五、高級專題(AdvancedTopics)1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
1.1策略式博弈導(dǎo)論與嚴格占優(yōu)IntroductiontoGamesinStrategicFormandIteratedStrictDominance
1.1.1博弈的策略式(Strategic-FormGames
)三要素參與人(players)可選策略(thestrategiesavailabletoeachplayers)支付(thepay-offs):
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
CommonknowledgeUsuallywealsoassumethatallplayersknowthestructureofthestrategicform,andknowthattheiropponentsknowit,andknowthattheiropponentsknowthattheyknow,andsoonadinfinitum.Thatis,thestructureofthegameiscommonknowledge,aconceptexaminedmoreformallyinchapter14.Thischapterusescommonknowledgeinformally,tomotivatethesolutionconceptofNashequilibriumanditeratedstrictdominance.Aswillbeseen,commonknowledgeofpayoffsonitsownisinfactneithernecessarynorsufficienttojustifyNashequilibrium.
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Wefocusourattentiononfinitegames,thatis,gameswhereisfinite;finitenessshouldbeassumedwhereverwedonotexplicitlynoteotherwise.Strategicformsforfinitetwo-playergamesareoftendepictedasmatrices,asinfigure1.1.Inthismatrix,players1and2havethreepurestrategieseach:U,M,D(up,middle,anddown)andL,M,R(left,middle,andright),respectively.Thefirstentryineachboxisplayer1’spayoffforthecorrespondingstrategyprofile;thesecondisplayer2’s.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
MixedStrategy1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Notethatplayeri’spayofftoamixed-strategyprofileisalinearfunctionofplayer’smixingprobability
i,afactwhichhasmanyimportantimplications.Notealsothatplayeri’spayoffisapolynomialfunctionofthestrategyprofile,andsoinparticulariscontinuous.Last,notethatthesetofmixedstrategiescontainsthepurestrategies,asdegenerateprobabilitydistributionsareincluded.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Forinstance,infigure1.1amixedstrategyforplayer1isavector(
1(U),
1(M),
1(D))suchthat
1(U),
1(M),
1(D)arenonnegativeand
1(U)+
1(M)+
1(D)=1.Thepayoffstoprofiles
1(1/3,1/3,1/3)and
2(0,1/2,1/2)are1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
1.1.2劣策略(DominatedStrategies)Isthereanobviouspredictionofhowthegamedescribedinfigure1.1shouldbeplayed?
Notethat,nomatterhowplayer1plays,Rgivesplayer2astrictlyhigherpayoffthanMdoes.Informallanguage,strategyMisstrictlydominated.Thus,a“rational”player2shouldnotplayM.Furthermore,ifplayer1knowsthatplayer2willnotplayM,thenUisabetterchoicethanMorD.Finally,ifplayer2knowsthatplayer1knowsthatplayer2willnotplayM,thenplayer2knowsthatplayer1willplayU,andsoplayer2shouldplayL.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
一個純策略,即使其不嚴格劣于任何一個純策略,卻可能嚴格劣于一個混合策略ApurestrategymaybestrictlydominatedbyamixedstrategyevenifitisnotstrictlydominatedbyanypurestrategyHereplayer1’sstrategyMisnotdominatedbyU,becauseMisbetterthanUifplayer2movesR;andMisnotdominatedbyD,becauseMisbetterthanDwhen2movesL.However,ifPlayer1playsUwithprobability1/2andDwithprobability1/2,heisguaranteedanexpectedpayoffof1/2regardlessofhowplayer2plays,whichexceedsthepayoffof0hereceivesfromM.Hence,apurestrategymaybestrictlydominatedbyamixedstrategyevenifitisnotstrictlydominatedbyanypurestrategy.
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
嚴格劣策略
(StrictlyDominatedPureStrategy)1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Sofarwehaveconsidereddominatedpurestrategies.Itiseasytoseethatamixedstrategythatassignspositiveprobabilitytoadominatedpurestrategyisdominated.
However,amixedstrategymaybestrictlydominatedeventhoughitassignspositiveprobabilityonlytopurestrategiesthatarenotevenweaklydominated.Figure1.3givesanexample.
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Whenagameissolvablebyiteratedstrictdominanceinthesensethateachplayerisleftwithasinglestrategy,asinfigure1.1,theuniquestrategyprofileobtainedisanobviouscandidateforthepredictionofhowthegamewillbeplayed.Althoughthiscandidateisoftenagoodprediction,thisneednotbethecase,especiallywhenthepayoffscantakeonextremevalues.1.GamesinStrategicFormandNashEquilibriumIntheoriginalstory,twosuspectsarebeingseparatelyinterrogatedandinvitedtoconfess.Oneofthem,sayA,istold,“Iftheothersuspect,B,doesnotconfess,thenyoucancutaverygooddealforyourselfbyconfessing.ButifBdoesconfess,thenyouwoulddowelltoconfess,too;otherwisethecourtwillbeespeciallytoughonyou.Soyoushouldconfessnomatterwhattheotherdoes.”Bistoldtoconfess,withtheuseofsimilarreasoning.
AlconfessDon’tBobconfess0,02,-1Don’t-1,21,11.1.3ApplicationsoftheEliminationofDominatedStrategies
Example1.1ThePrisoner’sDilemma如果Bob的策略是Al的最優(yōu)反應(yīng)策略是坦白坦白不坦白坦白1.GamesinStrategicFormandNashEquilibrium
1.1.3ApplicationsoftheEliminationofDominatedStrategies
Manyversionsoftheprisoner’sdilemmahaveappearedinthesocialsciences.
Oneexampleismoralhazardinteams.Supposethattherearetwoworkers,i=1,2,andthateachcan“work”(si=1)or“shirk”(si=0).Thetotaloutputoftheteamis4(s1+s2)andissharedequallybetweenthetwoworkers.Eachworkerincursprivatecost3whenworkingand0whenshirking.With“work”identifiedwithCand“shirk”withD,thepayoffmatrixforthismoral-hazard-in-teamsgameisthatoffigure1.7,and“work”isastrictlydominatedstrategyforeachworker.1.GamesinStrategicFormandNashEquilibrium1.1.3ApplicationsoftheEliminationofDominatedStrategiesExamplePlayer2LeftMiddleRightPlayer1Up1,01,20,1Down0,30,12,01.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
ExampleSecond-PriceAuction1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
SolutiontotheSecond-PriceAuction1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
SolutiontotheSecond-PriceAuctionThus,itisreasonabletopredictthatbiddersbidtheirvaluationinthesecond-priceauction.Therefore,bidderIwinsandhasutilityvI-vI-1.Notealsothatbecausebiddingone’svaluationisadominantstrategy,itdoesnotmatterwhetherthebiddershaveinformationaboutoneanother’svaluations.Hence,ifbiddersknowtheirownvaluationbutdonotknowtheotherbidders’valuations,itisstilladominantstrategyforeachbiddertobidhisvaluation.1.GamesinStrategicFormandNashEquilibrium
1.2NashEquilibrium
1.2.1DefinitionsofNashEquilibriumANashequilibriumisaprofileofstrategiessuchthateachplayer’sstrategyisanoptimalresponsetotheotherplayers’strategies.1.GamesinStrategicFormandNashEquilibrium
Pure-StrategyNashEquilibriumApure-strategyNashequilibriumisapure-strategyprofilethatsatisfiesthesameconditions.Thatis,forallSinceexpectedutilitiesare“l(fā)inearintheprobabilities,”ifaplayerusesanondegeneratemixedstrategyinaNashequilibrium,hemustbeindifferentbetweenallpurestrategiestowhichheassignspositiveprobability.1.GamesinStrategicFormandNashEquilibrium
StrictNashEquilibrium1.
GamesinStrategicFormandNashEquilibrium
ConsistentPredictionsNashequilibriaare“consistent”predictionsofhowthegamewillbeplayed,inthesensethatifallplayerspredictthataparticularNashequilibriumwilloccurthennoplayerhasincentivetoplaydifferently.Thus,aNashequilibrium,andonlyaNashequilibrium,canhavethepropertythattheplayerscanpredictit,predictthattheiropponentspredictit,andsoon.Incontrast,apredictionthatanyfixednon-Nashprofilewilloccurimpliesthatatleastoneplayerwillmakea“mistake,”eitherinhispredictionofhisopponents’playor(giventhatprediction)inhisoptimizationofhispayoff.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Wedonotmaintainthatsuchmistakesneveroccur.
Infact,theymaybelikelyinsomespecialsituations.Butpredictingthemrequiresthatthegametheoristsknowmoreabouttheoutcomeofthegamethantheparticipantsknow.ThisiswhymosteconomicapplicationsofgametheoryrestrictattentiontoNashequilibria.
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
ThefactthatNashequilibriapassthetestofbeingconsistentpredictionsdoesnotmakethemgoodpredictions,andinsituationsitseemsrashtothinkthataprecisepredictionisavailable.
By“situations”wemeantodrawattentiontothefactthatthelikelyoutcomeofagamedependsonmoreinformationthanisprovidedbythestrategicform.Forexample,onewouldliketoknowhowmuchexperiencetheplayershavewithgamesofthissort,whethertheycomefromacommoncultureandthusmightsharecertainexpectationsabouthowthegamewillbeplayed,andsoon.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
DominanceandNashEquilibriumThesamepropertyholdsforiterateddominance.Thatis,ifasinglestrategyprofilesurvivesiterateddeletionofstrictlydominatedstrategies,thenitistheuniqueNashequilibriumofthegame.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
DominanceandNashEquilibriumConversely,anyNash-equilibriumstrategyprofilemustputweightonlyonstrategiesthatarenotstrictlydominated(or,moregenerally,dosurviveiterateddeletionofstrictlydominatedstrategies),becauseaplayercouldincreasehispayoffbyreplacingadominatedstrategywithonethatdominatesit.However,Nashequilibriamayassign
positiveprobabilitytoweaklydominatedstrategies.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
1.2.2ExamplesofPure-StrategyEquilibriaExample:CournotCompetition
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Example:CournotCompetition(continued)1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Example:CournotCompetition(continued)1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Example:HotellingCompetition
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Example:HotellingCompetition
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Example:HotellingCompetition
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Example:MajorityVotingTherearethreeplayers,1,2,and3,andthreealternatives,A,B,andC.Playersvotesimultaneouslyforanalternative;abstainingisnotallowed.Thus,thestrategyspacesareSi={A,B,C}.Thealternativewiththemostvoteswins;ifnoalternativereceivesamajority,thenalternativeAisselected.ThepayofffunctionsareThisgamehasthreepure-strategyequilibriumoutcomes:A,B,andC.Therearemoreequilibriathanthis:Ifplayers1and3voteforoutcomeA,thenplayer2’svotedoesnotchangetheoutcome,andplayer3isindifferentabouthowhevotes.Hence,theprofiles(A,A,A)and(A,B,A)arebothNashequilibriumwhoseoutcomeisA.(Theprofile(A,A,B)isnotaNashequilibrium,sinceifplayer3votesforBthenplayer2wouldprefertovoteforBaswell.)1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibriumRogerHeadsTailsBarryHeads-1,11,-1Tails1,-1-1,11.2.3NonexistenceofaPure-StrategyEquilibrium
Notallgameshavepure-strategyNashequilibria.TwoexamplesofgameswhoseonlyNashequilibriumisin(nondegenerate)mixedstrategiesfollow.MatchingPennisGame1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibriumPrincipalINIAgentS0,-hw,-wWw-g,v-w-hw-g,v-wInspectionGameApopularvariantofthe“matchingpennies”gameisthe“inspectiongame,”whichhasbeenappliedtoarmscontrol,crimedeterrence,andworkerincentives.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
Battleofthesexes
WshowgameHshow1,20,0game0,02,11.2.4MultipleNashEquilibria,FocalPoints,andParetoOptimalityManygameshaveseveralNashequilibria.Whenthisisthecase,theassumptionthataNashequilibriumisplayedreliesontherebeingsomemechanismorprocessthatleadsalltheplayerstoexpectthesameequilibrium.2/31/31/32/31.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibriumChickenGameorhawk-doveGame
MikeGostraightTTurnawayWNeilGostraightT-1,-12,1TurnawayW1,20,01/21/21.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
FocalpointsSchelling’s(1960)theoryof“focalpoints”suggeststhatinsome“real-life”situationsplayersmaybeabletocoordinateonaparticularequilibriumbyusinginformationthatisabstractedawaybythestrategicform.Onereasonthatgametheoryabstractsawayfromsuchconsiderationsisthatthe“focalness”ofvariousstrategiesdependsontheplayers’cultureandpastexperiences.
Forexample,supposetwoplayersareaskedtonameanexacttime,withthepromiseofarewardiftheirchoicesmatch.1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
FocalPoints:Stag-huntGameAnotherexampleofmultipleequilibriaisthestag-huntgameweusedtobeginwithchapter,whereeachplayerhastochoosewhethertohunthare
byhimselfortojoinagroupthathuntsstag.SupposenowthatthereareIplayers,thatchoosingharegivespayoff1regardlessoftheotherplayers’actions,andthatchoosingstaggivespayoff2ifallplayerschoosestagandgivespayoff0otherwise.Thisgamehastwopure-strategyequilibria:“allstag”and“allhare.”
Nevertheless,itisnotclearwhichequilibriumshouldbeexpected.Inparticular,whichequilibriumismoreplausiblemaydependonthenumberofplayers.p
≥1/2;p8≥1/2,orp≥0.93
“allhare”risk-dominates“allstag.”
1.完全信息靜態(tài)博弈
GamesinStrategicFormandNashEquilibrium
ParetoOptimalityPlayer2LRPlayer1U9,90,8D8,07,7AlthoughriskdominancethensuggeststhataPareto-dominant
equilibriumneednotalwaysbeplayed,itissometimesarguedthatplayerswilli
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 干部能力 課件
- 《電商圖片處理基礎(chǔ)》高職全套教學(xué)課件
- 人教版手指課件
- 第六講 歡度節(jié)日(看圖寫話教學(xué))-二年級語文上冊(統(tǒng)編版)
- 2024年遼寧省中考生物真題卷及答案解析
- 幼兒園小班音樂《合攏放開》教案
- 西京學(xué)院《影視作品分析》2021-2022學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《數(shù)據(jù)挖掘》2022-2023學(xué)年期末試卷
- 人教版八年級物理《光沿直線傳播》
- 西京學(xué)院《繼電保護裝置》2021-2022學(xué)年期末試卷
- 2024年公安智能外呼項目合同
- 河南省信陽市2024-2025學(xué)年七年級上學(xué)期期中歷史試題(含答案)
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 2024年學(xué)校食堂管理工作計劃(六篇)
- 體育賽事組織服務(wù)協(xié)議
- 天車工競賽考核題
- 民辦非企業(yè)單位理事會制度
- 臨床輸血的護理課件
- 民生銀行在線測評真題
- 人教版(PEP)小學(xué)六年級英語上冊全冊教案
- 2024年木屑購銷合同范本
評論
0/150
提交評論