




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省鄒城市數(shù)學高一第二學期期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對變量有觀測數(shù)據(jù),得散點圖(1);對變量有觀測數(shù)據(jù)(,得散點圖(2),由這兩個散點圖可以判斷()A.變量與正相關,與正相關 B.變量與正相關,與負相關C.變量與負相關,與正相關 D.變量與負相關,與負相關2.已知等比數(shù)列的公比,該數(shù)列前9項的乘積為1,則()A.8 B.16 C.32 D.643.小金同學在學校中貫徹著“邊玩邊學”的學風,他在“漢諾塔”的游戲中發(fā)現(xiàn)了數(shù)列遞推的奧妙:有、、三個木樁,木樁上套有編號分別為、、、、、、的七個圓環(huán),規(guī)定每次只能將一個圓環(huán)從一個木樁移動到另一個木樁,且任意一個木樁上不能出現(xiàn)“編號較大的圓環(huán)在編號較小的圓環(huán)之上”的情況,現(xiàn)要將這七個圓環(huán)全部套到木樁上,則所需的最少次數(shù)為()A. B. C. D.4.等比數(shù)列的前項和為,,且成等差數(shù)列,則等于()A. B. C. D.5.某賽季甲、乙兩名籃球運動員5場比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則下列結論錯誤的是()A.B.甲得分的方差是736C.乙得分的中位數(shù)和眾數(shù)都為26D.乙得分的方差小于甲得分的方差6.要得到函數(shù)y=cos4x+πA.向左平移π3個單位長度 B.向右平移πC.向左平移π12個單位長度 D.向右平移π7.過點P(0,2)作直線x+my﹣4=0的垂線,垂足為Q,則Q到直線x+2y﹣14=0的距離最小值為()A.0 B.2 C. D.28.菱形ABCD,E是AB邊靠近A的一個三等分點,DE=4,則菱形ABCD面積最大值為()A.36 B.18 C.12 D.99.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}則A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)10.設不等式組所表示的平面區(qū)域為,在內任取一點,的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前項和為,則其通項公式__________.12.某海域中有一個小島(如圖所示),其周圍3.8海里內布滿暗礁(3.8海里及以外無暗礁),一大型漁船從該海域的處出發(fā)由西向東直線航行,在處望見小島位于北偏東75°,漁船繼續(xù)航行8海里到達處,此時望見小島位于北偏東60°,若漁船不改變航向繼續(xù)前進,試問漁船有沒有觸礁的危險?答:______.(填寫“有”、“無”、“無法判斷”三者之一)13.已知直線過點,且在兩坐標軸上的截距相等,則此直線的方程為_____________.14.已知銳角、滿足,,則________.15.過點作直線與圓相交,則在弦長為整數(shù)的所有直線中,等可能的任取一條直線,則弦長長度不超過14的概率為______________.16.設,為單位向量,其中,,且在方向上的射影數(shù)量為2,則與的夾角是___.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知都是第二象限的角,求的值。18.已知的頂點,邊上的中線所在直線方程為,邊上的高,所在直線方程為.(1)求頂點的坐標;(2)求直線的方程.19.己知向量,,設函數(shù),且的圖象過點和點.(1)當時,求函數(shù)的最大值和最小值及相應的的值;(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,若在有兩個不同的解,求實數(shù)的取值范圍.20.化簡求值:(1)化簡:(2)求值,已知,求的值21.已知集合,數(shù)列的首項,且當時,點,數(shù)列滿足.(1)試判斷數(shù)列是否是等差數(shù)列,并說明理由;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
根據(jù)增大時的變化趨勢可確定結果.【題目詳解】圖(1)中,隨著的增大,的變化趨勢是逐漸在減小,因此變量與負相關;圖(2)中,隨著的增大,的變化趨勢是逐漸在增大,因此變量與正相關.故選:【題目點撥】本題考查根據(jù)散點圖判斷相關關系的問題,屬于基礎題.2、B【解題分析】
先由數(shù)列前9項的乘積為1,結合等比數(shù)列的性質得到,從而可求出結果.【題目詳解】由已知,又,所以,即,所以,,故選B.【題目點撥】本題主要考查等比數(shù)列的性質以及等比數(shù)列的基本量計算,熟記等比數(shù)列的性質與通項公式即可,屬于??碱}型.3、B【解題分析】
假設樁上有個圓環(huán),將個圓環(huán)從木樁全部套到木樁上,需要最少的次數(shù)為,根據(jù)題意求出數(shù)列的遞推公式,利用遞推公式求出數(shù)列的通項公式,從而得出的值,可得出結果.【題目詳解】假設樁上有個圓環(huán),將個圓環(huán)從木樁全部套到木樁上,需要最少的次數(shù)為,可這樣操作,先將個圓環(huán)從木樁全部套到木樁上,至少需要的次數(shù)為,然后將最大的圓環(huán)從木樁套在木樁上,需要次,在將木樁上個圓環(huán)從木樁套到木樁上,至少需要的次數(shù)為,所以,,易知.設,得,對比得,,且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,,故選:B.【題目點撥】本題考查數(shù)列遞推公式的應用,同時也考查了利用待定系數(shù)法求數(shù)列的通項,解題的關鍵就是利用題意得出數(shù)列的遞推公式,考查推理能力與運算求解能力,屬于中等題.4、A【解題分析】
根據(jù)等差中項的性質列方程,并轉化為的形式,由此求得的值,進而求得的值.【題目詳解】由于成等差數(shù)列,故,即,所以,,所以,故選A.【題目點撥】本小題主要考查等差中項的性質,考查等比數(shù)列基本量的計算,屬于基礎題.5、B【解題分析】
根據(jù)題意,依次分析選項,綜合即可得答案.【題目詳解】根據(jù)題意,依次分析選項:對于A,甲得分的極差為32,30+x﹣6=32,解得:x=8,A正確,對于B,甲得分的平均值為,其方差為,B錯誤;對于C,乙的數(shù)據(jù)為:12、25、26、26、31,其中位數(shù)、眾數(shù)都是26,C正確,對于D,乙得分比較集中,則乙得分的方差小于甲得分的方差,D正確;故選:B.【題目點撥】本題考查莖葉圖的應用,涉及數(shù)據(jù)極差、平均數(shù)、中位數(shù)、眾數(shù)、方差的計算,屬于基礎題.6、C【解題分析】
先化簡得y=cos【題目詳解】因為y=cos所以要得到函數(shù)y=cos4x+π3的圖像,只需將函數(shù)故選:C【題目點撥】本題主要考查三角函數(shù)的圖像的變換,意在考查學生對該知識的理解掌握水平,屬于基礎題.7、C【解題分析】
由直線過定點,得到的中點,由垂直直線,得到點在以點為圓心,以為半徑的圓,求得圓的方程,由此求出到直線的距離最小值,得到答案.【題目詳解】由題意,過點作直線的垂線,垂足為,直線過定點,由中點公式可得,的中點,由垂直直線,所以點點在以點為圓心,以為半徑的圓,其圓的方程為,則圓心到直線的距離為所以點到直線的距離最小值;,故選:C.【題目點撥】本題主要考查了圓的標準方程,直線與圓的位置關系的應用,同時涉及到點到直線的距離公式的應用,著重考查了推理與計算能力,以及分析問題和解答問題的能力,試題綜合性強,屬于中檔試題.8、B【解題分析】
設出菱形的邊長,在三角形ADE中,用余弦定理表示出cosA【題目詳解】設菱形的邊長為3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故選:B【題目點撥】本小題主要考查余弦定理解三角形,考查同角三角函數(shù)的基本關系式,考查菱形的面積公式,考查二次函數(shù)最值的求法,屬于中檔題.9、A【解題分析】
可解出集合A,然后進行交集的運算即可.【題目詳解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故選:A.【題目點撥】本題考查交集的運算,是基礎題,注意A中x∈N10、A【解題分析】作出約束條件所表示的平面區(qū)域,如圖所示,四邊形所示,作出直線,由幾何概型的概率計算公式知的概率,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】分析:先根據(jù)和項與通項關系得當時,,再檢驗,時,不滿足上述式子,所以結果用分段函數(shù)表示.詳解:∵已知數(shù)列的前項和,∴當時,,當時,,經檢驗,時,不滿足上述式子,故數(shù)列的通項公式.點睛:給出與的遞推關系求,常用思路是:一是利用轉化為的遞推關系,再求其通項公式;二是轉化為的遞推關系,先求出與之間的關系,再求.應用關系式時,一定要注意分兩種情況,在求出結果后,看看這兩種情況能否整合在一起.12、無【解題分析】
可過作的延長線的垂線,垂足為,結合角度關系可判斷為等腰三角形,再通過的邊角關系即可求解,判斷與3.8的大小關系即可【題目詳解】如圖,過作的延長線的垂線,垂足為,在中,,,則,所以為等腰三角形。,又,所以,,所以漁船沒有觸礁的危險故答案為:無【題目點撥】本題考查三角函數(shù)在生活中的實際應用,屬于基礎題13、或【解題分析】
分兩種情況考慮,第一:當所求直線與兩坐標軸的截距不為0時,設出該直線的方程為,把已知點坐標代入即可求出的值,得到直線的方程;第二:當所求直線與兩坐標軸的截距為0時,設該直線的方程為,把已知點的坐標代入即可求出的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.【題目詳解】解:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為,把代入所設的方程得:,則所求直線的方程為即;②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為,把代入所求的方程得:,則所求直線的方程為即.綜上,所求直線的方程為:或.故答案為:或【題目點撥】此題考查學生會根據(jù)條件設出直線的截距式方程和點斜式方程,考查了分類討論的數(shù)學思想,屬于基礎題.14、.【解題分析】試題分析:由題意,所以.考點:三角函數(shù)運算.15、【解題分析】
根據(jù)圓的性質可求得最長弦和最短弦的長度,從而得到所有弦長為整數(shù)的直線條數(shù),從中找到長度不超過的直線條數(shù),根據(jù)古典概型求得結果.【題目詳解】由題意可知,最長弦為圓的直徑:在圓內部且圓心到的距離為最短弦長為:弦長為整數(shù)的直線的條數(shù)有:條其中長度不超過的條數(shù)有:條所求概率:本題正確結果:【題目點撥】本題考查古典概型概率問題的求解,涉及到過圓內一點的最長弦和最短弦的長度的求解;易錯點是忽略圓的對稱性,造成在求解弦長為整數(shù)的直線的條數(shù)時出現(xiàn)丟根的情況.16、【解題分析】
利用在方向上的射影數(shù)量為2可得:,即可整理得:,問題得解.【題目詳解】因為在方向上的射影數(shù)量為2,所以,整理得:又,為單位向量,所以.設與的夾角,則所以與的夾角是【題目點撥】本題主要考查了向量射影的概念及方程思想,還考查了平面向量夾角公式應用,考查轉化能力及計算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、;【解題分析】
根據(jù)所處象限可確定的符號,利用同角三角函數(shù)關系可求得的值;代入兩角和差正弦和余弦公式可求得結果.【題目詳解】都是第二象限的角,,【題目點撥】本題考查利用兩角和差正弦和余弦公式求值的問題;關鍵是能夠根據(jù)角所處的范圍和同角三角函數(shù)關系求得三角函數(shù)值.18、(1);(2)【解題分析】
(1)根據(jù)邊上的高所在直線方程求出的斜率,由點斜式可得的方程,與所在直線方程聯(lián)立即可得結果;(2)設則,代入中,可求得點坐標,利用兩點式可得結果.【題目詳解】(1)由邊上的高所在直線方程為得,所以直線AB所在的直線方程為,即聯(lián)立解得所以頂點的坐標為(4,3)(2)因為在直線上,所以設則,代入中,得所以則直線的方程為,即【題目點撥】本題主要考查直線的方程,直線方程主要有五種形式,每種形式的直線方程都有其局限性,斜截式與點斜式要求直線斜率存在,所以用這兩種形式設直線方程時要注意討論斜是否存在;截距式要注意討論截距是否為零;兩點式要注意討論直線是否與坐標軸平行;求直線方程的最終結果往往需要化為一般式.19、(1)最大值為2,此時;最小值為-1,此時.(2)【解題分析】
(1)根據(jù)向量數(shù)量積坐標公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點,求解函數(shù)解析式,當時,解出的范圍,根據(jù)三角函數(shù)性質,可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【題目詳解】解:(1)由題意知.根據(jù)的圖象過點和,得到,解得,.當時,,,最大值為2,此時,最小值為-1,此時.(2)將函數(shù)的圖象向右平移一個單位得,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得令,,如圖當時,在有兩個不同的解∴,即.【題目點撥】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸縮變換,考查計算能力,考查轉化與化歸思想,考查數(shù)形結合思想,屬于中等題型.20、(1);(2)【解題分析】
(1)根據(jù)誘導公式先化簡每一項,然后即可得到最簡結果;(2)利用“齊次”式的特點,分子分母同除以,將其化簡為關于的形式即可求值.【題目詳解】(1)原式,(2)原
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)正規(guī)合同范本
- 別墅購銷合同范本
- 信用擔保貸款合同范本
- 制作人合同范本
- 單位房屋租用合同范本
- 中介用代管合同范本
- 農藥國際銷售合同范本
- 關于工地買賣合同范例
- 制作安裝勞務合同范本
- 北京車輛 合同范例
- 第22課 現(xiàn)代科技革命和產業(yè)發(fā)展(課件)-【中職專用】《世界歷史》(高教版2023基礎模塊)
- 2024年南京科技職業(yè)學院單招職業(yè)適應性測試題庫完整
- 家長會課件:小學三年級家長會 課件
- 醫(yī)院專業(yè)技術年度考核總結報告
- 2024中考道法時政熱點《中國外交大事大盤點》課件
- 小學生國家文化安全教育
- 綠植租擺投標方案
- 2024年消防初級考試模擬試題和答案
- 新聞編輯學PDF蔡雯第四版
- 小學五年級奧數(shù)競賽試題(含答案)
- 行政處罰自由裁量權課件
評論
0/150
提交評論