2024屆內(nèi)蒙古赤峰市翁牛特旗烏丹二中數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第1頁
2024屆內(nèi)蒙古赤峰市翁牛特旗烏丹二中數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第2頁
2024屆內(nèi)蒙古赤峰市翁牛特旗烏丹二中數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第3頁
2024屆內(nèi)蒙古赤峰市翁牛特旗烏丹二中數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第4頁
2024屆內(nèi)蒙古赤峰市翁牛特旗烏丹二中數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆內(nèi)蒙古赤峰市翁牛特旗烏丹二中數(shù)學(xué)高一第二學(xué)期期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在數(shù)列中,若,,則()A. B. C. D.2.如圖,測量河對岸的塔高時,選與塔底B在同一水平面內(nèi)的兩個測點C與D.現(xiàn)測得,,,并在點C測得塔頂A的仰角為,則塔高為()A. B. C.60m D.20m3.式子的值為()A. B.0 C.1 D.4.某單位職工老年人有30人,中年人有50人,青年人有20人,為了了解職工的建康狀況,用分層抽樣的方法從中抽取10人進行體檢,則應(yīng)抽查的老年人的人數(shù)為()A.3 B.5 C.2 D.15.()A.0 B.1 C.-1 D.26.設(shè)均為正數(shù),且,,.則()A. B. C. D.7.內(nèi)角,,的對邊分別為,,.已知,,,則這樣的三角形有()A.0個 B.1個 C.2個 D.1個或2個8.某學(xué)校高一、高二、高三教師人數(shù)分別為100、120、80,為了解他們在“學(xué)習(xí)強國”平臺上的學(xué)習(xí)情況,現(xiàn)用分層抽樣的方法抽取容量為45的樣本,則抽取高一教師的人數(shù)為()A.12 B.15 C.18 D.309.設(shè)是平面內(nèi)的一組基底,則下面四組向量中,能作為基底的是()A.與 B.與C.與 D.與10.已知數(shù)列滿足,則()A.10 B.20 C.100 D.200二、填空題:本大題共6小題,每小題5分,共30分。11.若不等式對于任意都成立,則實數(shù)的取值范圍是____________.12.的最大值為______.13.關(guān)于的不等式,對于恒成立,則實數(shù)的取值范圍為_______.14.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點對稱;④y=f(x)的圖象關(guān)于直線x=﹣對稱.其中正確的命題的序號是.15.在銳角中,內(nèi)角A,B,C所對的邊分別為a,b,c,若的面積為,且,則的周長的取值范圍是________.16.若數(shù)列的前項和為,則該數(shù)列的通項公式為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓與圓:關(guān)于直線對稱.(1)求圓的標準方程;(2)已知點,若與直線垂直的直線與圓交于不同兩點、,且是鈍角,求直線在軸上的截距的取值范圍.18.已知函數(shù)f(x)=asin(x)(a>0)在同一半周期內(nèi)的圖象過點O,P,Q,其中O為坐標原點,P為函數(shù)f(x)的最高點,Q為函數(shù)f(x)的圖象與x軸的正半軸的交點,△OPQ為等腰直角三角形.(1)求a的值;(2)將△OPQ繞原點O按逆時針方向旋轉(zhuǎn)角α(0<α),得到△OP′Q′,若點P′恰好落在曲線y(x>0)上(如圖所示),試判斷點Q′是否也落在曲線y(x>0),并說明理由.19.已知數(shù)列和中,數(shù)列的前n項和為,若點在函數(shù)的圖象上,點在函數(shù)的圖象上.設(shè)數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和;(3)求數(shù)列的最大值.20.已知向量,,且.(1)求的值;(2)求的值.21.的內(nèi)角的對邊分別為,已知.(1)求;(2)若為銳角三角形,且,求面積的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

利用倒數(shù)法構(gòu)造等差數(shù)列,求解通項公式后即可求解某一項的值.【題目詳解】∵,∴,即,數(shù)列是首項為,公差為2的等差數(shù)列,∴,即,∴.故選C.【題目點撥】對于形如,可將其轉(zhuǎn)化為的等差數(shù)列形式,然后根據(jù)等差數(shù)列去計算.2、D【解題分析】

由正弦定理確定的長,再求出.【題目詳解】,由正弦定理得:故選D【題目點撥】本題是正弦定理的實際應(yīng)用,關(guān)鍵是利用正弦定理求出,屬于基礎(chǔ)題.3、B【解題分析】

根據(jù)兩角和的余弦公式,得到原式,即可求解,得到答案.【題目詳解】由兩角和的余弦公式,可得,故選B.【題目點撥】本題主要考查了兩角和的余弦公式的化簡求值,其中解答中熟記兩角和的余弦公式是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.4、A【解題分析】

先由題意確定抽樣比,進而可求出結(jié)果.【題目詳解】由題意該單位共有職工人,用分層抽樣的方法從中抽取10人進行體檢,抽樣比為,所以應(yīng)抽查的老年人的人數(shù)為.故選A【題目點撥】本題主要考查分層抽樣,會由題意求抽樣比即可,屬于基礎(chǔ)題型.5、A【解題分析】

直接利用三角函數(shù)的誘導(dǎo)公式化簡求值.【題目詳解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故選A.【題目點撥】本題考查利用誘導(dǎo)公式化簡求值,是基礎(chǔ)的計算題.6、A【解題分析】試題分析:在同一坐標系中分別畫出,,的圖象,與的交點的橫坐標為,與的圖象的交點的橫坐標為,與的圖象的交點的橫坐標為,從圖象可以看出.考點:指數(shù)函數(shù)、對數(shù)函數(shù)圖象和性質(zhì)的應(yīng)用.【方法點睛】一般一個方程中含有兩個以上的函數(shù)類型,就要考慮用數(shù)形結(jié)合求解,在同一坐標系中畫出兩函數(shù)圖象的交點,函數(shù)圖象的交點的橫坐標即為方程的解.7、C【解題分析】

根據(jù)和的大小關(guān)系,判斷出解的個數(shù).【題目詳解】由于,所以,故解的個數(shù)有兩個.如圖所示兩個解.故選:C【題目點撥】本小題主要考查正弦定理的運用過程中,三角形解的個數(shù)判斷,屬于基礎(chǔ)題.8、B【解題分析】

由分層抽樣方法即按比例抽樣,運算即可得解.【題目詳解】解:由分層抽樣方法可得抽取高一教師的人數(shù)為,故選:B.【題目點撥】本題考查了分層抽樣方法,屬基礎(chǔ)題.9、C【解題分析】

利用向量可以作為基底的條件是,兩個向量不共線,由此分別判定選項中的兩個向量是否共線即可.【題目詳解】由是平面內(nèi)的一組基底,所以和不共線,對應(yīng)選項A:,所以這2個向量共線,不能作為基底;對應(yīng)選項B:,所以這2個向量共線,不能作為基底;對應(yīng)選項D:,所以這2個向量共線,不能作為基底;對應(yīng)選項C:與不共線,能作為基底.故選:C.【題目點撥】本題主要考查基底的定義,判斷2個向量是否共線的方法,屬于基礎(chǔ)題.10、C【解題分析】

由題可得數(shù)列是以為首相,為公差的等差數(shù)列,求出數(shù)列的通項公式,進而求出【題目詳解】因為,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以,則【題目點撥】本題考查由遞推公式證明數(shù)列是等差數(shù)列以及等差數(shù)列的通項公式,屬于一般題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【題目詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實數(shù)的取值范圍是.故答案為:【題目點撥】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.12、3【解題分析】

由余弦型函數(shù)的值域可求得整個函數(shù)的值域,進而得到最大值.【題目詳解】,即故答案為:【題目點撥】本題考查含余弦型函數(shù)的值域的求解問題,關(guān)鍵是明確在自變量無范圍限制時,余弦型函數(shù)的值域為.13、或【解題分析】

利用換元法令,則對任意的恒成立,再對分兩種情況討論,令求出函數(shù)的最小值,即可得答案.【題目詳解】令,則對任意的恒成立,(1)當(dāng),即時,上式顯然成立;(2)當(dāng),即時,令①當(dāng)時,,顯然不成立,故不成立;②當(dāng)時,,∴解得:綜上所述:或.故答案為:或.【題目點撥】本題考查含絕對值函數(shù)的最值問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力,求解時注意分段函數(shù)的最值求解.14、①③【解題分析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點對稱,③正確④不正確;故答案為①③.15、【解題分析】

通過觀察的面積的式子很容易和余弦定理聯(lián)系起來,所以,求出,所以.再由正弦定理即可將的范圍通過輔助角公式化簡利用三角函數(shù)求出范圍即可.【題目詳解】因為的面積為,所以,所以.由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【題目點撥】此題考察解三角形,熟悉正余弦定理,然后一般求范圍的題目轉(zhuǎn)化為求解三角函數(shù)值域即可,易錯點注意轉(zhuǎn)化后角的范圍區(qū)間,屬于中檔題目.16、【解題分析】

由,可得出,再令,可計算出,然后檢驗是否滿足在時的表達式,由此可得出數(shù)列的通項公式.【題目詳解】由題意可知,當(dāng)時,;當(dāng)時,.又不滿足.因此,.故答案為:.【題目點撥】本題考查利用求,一般利用來計算,但要對是否滿足進行檢驗,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】

(1)根據(jù)兩圓對稱,直徑一樣,只需圓心對稱即可得圓C的標準方程;(2)設(shè)直線l的方程為y=﹣x+m與圓C聯(lián)立方程組,利用韋達定理,設(shè)而不求的思想即可求解b范圍,即截距的取值范圍.【題目詳解】(1)圓的圓心坐標為,半徑為2設(shè)圓的圓心坐標為,由題意可知解得:由對稱性質(zhì)可得,圓的半徑為2,所以圓的標準方程為:(2)設(shè)直線的方程為,聯(lián)立得:,設(shè)直線與圓的交點,,由,得,(1)因為為鈍角,所以,且直線不過點即滿足,且又,,所以(2)由(1)式(2)式可得,滿足,即,因為,所以直線在軸上的截距的取值范圍是【題目點撥】本題考查直線與圓的位置關(guān)系,是中檔題,解題時要認真審題,注意韋達定理的合理運用.18、(1)2;(2)見解析.【解題分析】

(1)由已知利用周期公式可求最小正周期T=8,由題意可求Q坐標為(1,0).P坐標為(2,a),結(jié)合△OPQ為等腰直角三角形,即可得解a的值.(2)由(Ⅰ)知,|OP|=2,|OQ|=1,可求點P′,Q′的坐標,由點P′在曲線y(x>0)上,利用倍角公式,誘導(dǎo)公式可求cos2,又結(jié)合0<α,可求sin2α的值,由于1cosα?1sinα=8sin2α=23,即可證明點Q′不落在曲線y(x>0)上.【題目詳解】(Ⅰ)因為函數(shù)f(x)=asin(x)(a>0)的最小正周期T8,所以函數(shù)f(x)的半周期為1,所以|OQ|=1.即有Q坐標為(1,0).又因為P為函數(shù)f(x)圖象的最高點,所以點P坐標為(2,a),又因為△OPQ為等腰直角三角形,所以a2.(Ⅱ)點Q′不落在曲線y(x>0)上.理由如下:由(Ⅰ)知,|OP|=2,|OQ|=1,所以點P′,Q′的坐標分別為(2cos(),2sin()),(1cosα,1sinα),因為點P′在曲線y(x>0)上,所以3=8cos()sin()=1sin(2)=1cos2α,即cos2,又0<α,所以sin2α.又1cosα?1sinα=8sin2α=823.所以點Q′不落在曲線y(x>0)上.19、(1)(2)(3)【解題分析】

(1)先根據(jù)題設(shè)知,再利用求得,驗證符合,最后答案可得.

(2)由題設(shè)可知,把代入,然后用錯位相減法求和;(3)計算,判斷其大于零時的范圍,可得數(shù)列取最大值時的項數(shù),進而可得最大值..【題目詳解】解:(1)由已知得:,∵當(dāng)時,,又當(dāng)時,符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即為最大,故最大值為.【題目點撥】本題主要考查了數(shù)列的遞推式解決數(shù)列的通項公式和求和問題,考查數(shù)列最大項的求解,是中檔題.20、(1);(2)【解題分析】

(1)由向量垂直的坐標運算可得,再求解即可;(2)利用三角函數(shù)誘導(dǎo)公式可得原式,再構(gòu)造齊次式求解即可.【題目詳解】解:(1)因為,所以,因為,,所以,即,故.(2).【題目點撥】本題考查了向量垂直的坐標運算,重點考查了三角函數(shù)誘導(dǎo)公式及構(gòu)造齊次式求值,屬中檔題.21、(1);(2).【解題分析】

(1)利用正弦定理化簡題中等式,得到關(guān)于B的三角方程,最后根據(jù)A,B,C均為三角形內(nèi)角解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論