2024屆福建福州市第一高級中學數(shù)學高一下期末復(fù)習檢測試題含解析_第1頁
2024屆福建福州市第一高級中學數(shù)學高一下期末復(fù)習檢測試題含解析_第2頁
2024屆福建福州市第一高級中學數(shù)學高一下期末復(fù)習檢測試題含解析_第3頁
2024屆福建福州市第一高級中學數(shù)學高一下期末復(fù)習檢測試題含解析_第4頁
2024屆福建福州市第一高級中學數(shù)學高一下期末復(fù)習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建福州市第一高級中學數(shù)學高一下期末復(fù)習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.過正方形的頂點,作平面,若,則平面和平面所成的銳二面角的大小是A. B.C. D.2.函數(shù)的圖象大致為()A. B. C. D.3.用數(shù)學歸納法證明這一不等式時,應(yīng)注意必須為()A. B., C., D.,4.已知函數(shù)的圖象如圖所示,則的解析式為()A. B.C. D.5.設(shè)等差數(shù)列{an}的前n項和為Sn.若a1+a3=6,S4=16,則a4=()A.6 B.7 C.8 D.96.已知扇形的圓心角,弧長為,則該扇形的面積為()A. B. C.6 D.127.空間中可以確定一個平面的條件是()A.三個點 B.四個點 C.三角形 D.四邊形8.已知等差數(shù)列中,,則()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.10.已知=(2,3),=(3,t),=1,則=A.-3 B.-2C.2 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.當實數(shù)a變化時,點到直線的距離的最大值為_______.12.若,則_________.13.已知滿足約束條件,則的最大值為__14.在區(qū)間上,與角終邊相同的角為__________.15.函數(shù)的最小值為____________.16.已知函數(shù),數(shù)列的通項公式是,當取得最小值時,_______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某家具廠有方木料90,五合板600,準備加工成書桌和書櫥出售.已知生產(chǎn)第張書桌需要方木料O.l,五合板2,生產(chǎn)每個書櫥而要方木料0.2,五合板1,出售一張方桌可獲利潤80元,出售一個書櫥可獲利潤120元.(1)如果只安排生產(chǎn)書桌,可獲利潤多少?(2)怎樣安排生產(chǎn)可使所得利潤最大?18.已知數(shù)列滿足.(1)若,證明:數(shù)列是等比數(shù)列,求的通項公式;(2)求的前項和.19.已知是遞增的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)為各項非零的等差數(shù)列,其前n項和為,已知,求數(shù)列的前n項和.20.在ΔABC中,角A,B,C的對邊分別為a,b,c,a=8,c-1(1)若ΔABC有兩解,求b的取值范圍;(2)若ΔABC的面積為82,B>C,求b-c21.已知三棱柱(如圖所示),底面為邊長為2的正三角形,側(cè)棱底面,,為的中點.(1)求證:平面;(2)若為的中點,求證:平面;(3)求三棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】法一:建立如圖(1)所示的空間直角坐標系,不難求出平面APB與平面PCD的法向量分別為n1=(0,1,0),n2=(0,1,1),故平面ABP與平面CDP所成二面角的余弦值為=,故所求的二面角的大小是45°.法二:將其補成正方體.如圖(2),不難發(fā)現(xiàn)平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小為45°.2、C【解題分析】

利用函數(shù)的性質(zhì)逐個排除即可求解.【題目詳解】函數(shù)的定義域為,故排除A、B.令又,即函數(shù)為奇函數(shù),所以函數(shù)的圖像關(guān)于原點對稱,排除D故選:C【題目點撥】本題考查了函數(shù)圖像的識別,同時考查了函數(shù)的性質(zhì),屬于基礎(chǔ)題.3、D【解題分析】

根據(jù)題意驗證,,時,不等式不成立,當時,不等式成立,即可得出答案.【題目詳解】解:當,,時,顯然不等式不成立,當時,不等式成立,故用數(shù)學歸納法證明這一不等式時,應(yīng)注意必須為,故選:.【題目點撥】本題考查數(shù)學歸納法的應(yīng)用,屬于基礎(chǔ)題.4、D【解題分析】

由函數(shù)圖象求出,由周期求出,由五點發(fā)作圖求出的值,即可求出函數(shù)的解析式.【題目詳解】解:根據(jù)函數(shù)的圖象,可得,,所以.再根據(jù)五點法作圖可得,所以,故.故選:D.【題目點撥】本題主要考查由函數(shù)的部分圖像求解析式,屬于基礎(chǔ)題.5、B【解題分析】

利用等差數(shù)列的性質(zhì)對已知條件進行化簡,由此求得的值.【題目詳解】依題意,解得.故選:B【題目點撥】本小題主要考查等差中項的性質(zhì),屬于基礎(chǔ)題.6、A【解題分析】

可先由弧長計算出半徑,再計算面積.【題目詳解】設(shè)扇形半徑為,則,,.故選:A.【題目點撥】本題考查扇形面積公式,考查扇形弧長公式,掌握扇形的弧長和面積公式是解題基礎(chǔ).7、C【解題分析】

根據(jù)公理2即可得出答案.【題目詳解】在A中,不共線的三個點能確定一個平面,共線的三個點不能確定一個平面,故A錯誤;在B中,不共線的四個點最多能確定四個平面,故B錯誤;在C中,由于三角形的三個頂點不共線,因此三角形能確定一個平面,故C正確;在D中,四邊形有空間四邊形和平面四邊形,空間四邊形不能確定一個平面,故D錯誤.【題目點撥】本題對公理2進行了考查,確定一個平面關(guān)鍵是對過不在一條直線上的三點,有且只有一個平面的理解.8、C【解題分析】

,.故選C.9、C【解題分析】

根據(jù)程序框圖列出算法循環(huán)的每一步,結(jié)合判斷條件得出輸出的的值.【題目詳解】執(zhí)行如圖所示的程序框圖如下:不成立,,;不成立,,;不成立,,;不成立,,.成立,跳出循環(huán)體,輸出的值為,故選C.【題目點撥】本題考查利用程序框圖計算輸出結(jié)果,對于這類問題,通常利用框圖列出算法的每一步,考查計算能力,屬于中等題.10、C【解題分析】

根據(jù)向量三角形法則求出t,再求出向量的數(shù)量積.【題目詳解】由,,得,則,.故選C.【題目點撥】本題考點為平面向量的數(shù)量積,側(cè)重基礎(chǔ)知識和基本技能,難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由已知直線方程求得直線所過定點,再由兩點間的距離公式求解.【題目詳解】由直線,得,聯(lián)立,解得.直線恒過定點,到直線的最大距離.故答案為:.【題目點撥】本題考查點到直線距離最值的求法,考查直線的定點問題,是基礎(chǔ)題.12、【解題分析】

利用誘導公式求解即可【題目詳解】,故答案為:【題目點撥】本題考查誘導公式,是基礎(chǔ)題13、【解題分析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【題目詳解】由約束條件作出可行域,如圖所示,化目標函數(shù)為,由圖可得,當直線過時,直線在軸上的截距最大,所以有最大值為.故答案為1.【題目點撥】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.14、【解題分析】

根據(jù)與終邊相同的角可以表示為這一方法,即可得出結(jié)論.【題目詳解】因為,所以與角終邊相同的角為.【題目點撥】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學運算能力,是簡單題.15、【解題分析】

將函數(shù)構(gòu)造成的形式,用換元法令,在定義域上根據(jù)新函數(shù)的單調(diào)性求函數(shù)最小值,之后可得原函數(shù)最小值?!绢}目詳解】由題得,,令,則函數(shù)在遞增,可得的最小值為,則的最小值為.故答案為:【題目點撥】本題考查了換元法,以及函數(shù)的單調(diào)性,是基礎(chǔ)題。16、110【解題分析】

要使取得最小值,可令,即,對的值進行粗略估算即可得到答案.【題目詳解】由題知:①.要使①式取得最小值,可令①式等于.即,.又因為,,則當時,,,①式.則當時,,,①式.當或時,①式的值會變大,所以時,取得最小值.故答案為:【題目點撥】本題主要考查數(shù)列的函數(shù)特征,同時考查了指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),核心素養(yǎng)是考查學生靈活運用知識解決問題的能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)只安排生產(chǎn)書桌,最多可生產(chǎn)300張書桌,獲得利潤24000元;(2)生產(chǎn)書桌100張、書櫥400個,可使所得利潤最大【解題分析】

(1)設(shè)只生產(chǎn)書桌x個,可獲得利潤z元,則,由此可得最大值;(2)設(shè)生產(chǎn)書桌x張,書櫥y個,利潤總額為z元.則,,由線性規(guī)劃知識可求得的最大值.即作可行域,作直線,平移此直線得最優(yōu)解.【題目詳解】由題意可畫表格如下:方木料()五合板()利潤(元)書桌(個)0.1280書櫥(個)0.21120(1)設(shè)只生產(chǎn)書桌x個,可獲得利潤z元,則,∴∴所以當時,(元),即如果只安排生產(chǎn)書桌,最多可生產(chǎn)300張書桌,獲得利潤24000元(2)設(shè)生產(chǎn)書桌x張,書櫥y個,利潤總額為z元.則,∴在直角坐標平面內(nèi)作出上面不等式組所表示的平面區(qū)域,即可行域作直線,即直線.把直線l向右上方平移至的位置時,直線經(jīng)過可行域上的點M,此時取得最大值由解得點M的坐標為.∴當,時,(元).因此,生產(chǎn)書桌100張、書櫥400個,可使所得利潤最大所以當,時,.因此,生產(chǎn)書桌100張、書櫥400個,可使所得利潤最大.【題目點撥】本題考查簡單的線性規(guī)劃的實際應(yīng)用,解題時需根據(jù)已知條件設(shè)出變量,列出二元一次不等式組表示的約束條件,列出目標函數(shù),然后由解決線性規(guī)劃的方法求最優(yōu)解.18、(1)證明見解析,;(2).【解題分析】

(1)由條件可得,即,運用等比數(shù)列的定義,即可得到結(jié)論;運用等比數(shù)列的通項公式可得所求通項。(2)數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,可得所求的和?!绢}目詳解】解:(1)證明:由,得,又,,又,所以是首相為1,公比為2的等比數(shù)列;,。(2)前項和,,兩式相減可得:化簡可得【題目點撥】本題考查利用輔助數(shù)列求通項公式,以及錯位相減求和,考查學生的計算能力,是一道基礎(chǔ)題。19、(1);(2)【解題分析】

(1){an}是遞增的等比數(shù)列,公比設(shè)為q,由等比數(shù)列的中項性質(zhì),結(jié)合等比數(shù)列的通項公式解方程可得所求;(2)運用等差數(shù)列的求和公式和等差數(shù)列中項性質(zhì),求得bn=2n+1,再由數(shù)列的錯位相減法求和,化簡可得所求和.【題目詳解】(1)∵是遞增的等比數(shù)列,∴,,又,∴,是的兩根,∴,,∴,.(2)∵,∴由已知得,∴∴,化簡可得.【題目點撥】本題考查數(shù)列的通項和求和,等差等比數(shù)列的通項通常是列方程組解首項及公差(比),數(shù)列求和常見的方法有:裂項相消和錯位相減法,考查計算能力,屬于中等題.20、(1)(8,62);(2)【解題分析】

(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【題目詳解】(1)∵c-1∴sinC-∴sinA即sin∵sinB≠0,∴cosA=1若ΔABC有兩解,∴bsin解得8<b<62,即b的取值范圍為((2)由(1)知,SΔABC=1∵a2=b∴(b-c)2∵B>C,∴b-c=42【題目點撥】解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論