版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省尋甸縣第五中學(xué)2024屆高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列的前項(xiàng)和為,且,,,則的通項(xiàng)公式()A. B. C. D.2.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B4.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.5.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽(yáng)馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.6.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號(hào)是()A.①②③ B.②③④ C.①④ D.①②④7.已知數(shù)列滿足,(),則數(shù)列的通項(xiàng)公式()A. B. C. D.8.設(shè)全集U=R,集合,則()A. B. C. D.9.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.410.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國(guó)古代四大發(fā)明,此說(shuō)法最早由英國(guó)漢學(xué)家艾約瑟提出并為后來(lái)許多中國(guó)的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對(duì)中國(guó)古代的政治,經(jīng)濟(jì),文化的發(fā)展產(chǎn)生了巨大的推動(dòng)作用.某小學(xué)三年級(jí)共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問(wèn)中國(guó)古代四大發(fā)明,能說(shuō)出兩種發(fā)明的有45人,能說(shuō)出3種及其以上發(fā)明的有32人,據(jù)此估計(jì)該校三級(jí)的500名學(xué)生中,對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的有()A.69人 B.84人 C.108人 D.115人11.已知為圓:上任意一點(diǎn),,若線段的垂直平分線交直線于點(diǎn),則點(diǎn)的軌跡方程為()A. B.C.() D.()12.若復(fù)數(shù)滿足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)()A. B. C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.展開(kāi)式中項(xiàng)的系數(shù)是__________14.已知實(shí)數(shù)a,b,c滿足,則的最小值是______.15.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為_(kāi)_________.16.展開(kāi)式中的系數(shù)為_(kāi)________.(用數(shù)字做答)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點(diǎn).(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.18.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時(shí),恒成立,求的取值范圍.19.(12分)已知函數(shù)(1)解不等式;(2)若均為正實(shí)數(shù),且滿足,為的最小值,求證:.20.(12分)已知A是拋物線E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.21.(12分)已知橢圓,點(diǎn),點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),點(diǎn)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點(diǎn)為,若不經(jīng)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).且與圓相切.的周長(zhǎng)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.22.(10分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率是,動(dòng)點(diǎn)在橢圓上運(yùn)動(dòng),當(dāng)軸時(shí),.(1)求橢圓的方程;(2)延長(zhǎng)分別交橢圓于點(diǎn)(不重合).設(shè),求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項(xiàng)公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點(diǎn)睛】本小題考查數(shù)列的通項(xiàng)與前項(xiàng)和的關(guān)系等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力,應(yīng)用意識(shí).2、D【解析】
先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)椋褹B,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、C【解析】試題分析:集合考點(diǎn):集合間的關(guān)系4、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計(jì)算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長(zhǎng)為,如圖:的外接圓的圓心為斜邊的中點(diǎn),,且平面,,的中點(diǎn)為外接球的球心,半徑,外接球表面積.故選:A【點(diǎn)睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.5、B【解析】
利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽(yáng)馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國(guó)傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).6、D【解析】
①通過(guò)證明平面,證得;②通過(guò)證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)?,所以平面,故②正確;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)?,所以平面,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.7、A【解析】
利用數(shù)列的遞推關(guān)系式,通過(guò)累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項(xiàng)公式的求法,考查計(jì)算能力.8、A【解析】
求出集合M和集合N,,利用集合交集補(bǔ)集的定義進(jìn)行計(jì)算即可.【詳解】,,則,故選:A.【點(diǎn)睛】本題考查集合的交集和補(bǔ)集的運(yùn)算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.9、C【解析】
方法一:設(shè),利用拋物線的定義判斷出是的中點(diǎn),結(jié)合等腰三角形的性質(zhì)求得點(diǎn)的橫坐標(biāo),根據(jù)拋物線的定義求得,進(jìn)而求得.方法二:設(shè)出兩點(diǎn)的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫(xiě)出韋達(dá)定理,由此求得,進(jìn)而求得.【詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過(guò)定點(diǎn),過(guò)分別作于,于,連接,由,則,所以點(diǎn)為的中點(diǎn),又點(diǎn)是的中點(diǎn),則,所以,又所以由等腰三角形三線合一得點(diǎn)的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點(diǎn)橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.10、D【解析】
先求得名學(xué)生中,只能說(shuō)出一種或一種也說(shuō)不出的人數(shù),由此利用比例,求得名學(xué)生中對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的人數(shù).【詳解】在這100名學(xué)生中,只能說(shuō)出一種或一種也說(shuō)不出的有人,設(shè)對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的有人,則,解得人.故選:D【點(diǎn)睛】本小題主要考查利用樣本估計(jì)總體,屬于基礎(chǔ)題.11、B【解析】
如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計(jì)算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點(diǎn)睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.12、D【解析】
根據(jù)復(fù)數(shù)的四則運(yùn)算法則先求出復(fù)數(shù)z,再計(jì)算它的模長(zhǎng).【詳解】解:復(fù)數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的計(jì)算問(wèn)題,要求熟練掌握復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)長(zhǎng)度的計(jì)算公式,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-20【解析】
根據(jù)二項(xiàng)式定理的通項(xiàng)公式,再分情況考慮即可求解.【詳解】解:展開(kāi)式中項(xiàng)的系數(shù):二項(xiàng)式由通項(xiàng)公式當(dāng)時(shí),項(xiàng)的系數(shù)是,當(dāng)時(shí),項(xiàng)的系數(shù)是,故的系數(shù)為;故答案為:【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意分情況考慮,屬于基礎(chǔ)題.14、【解析】
先分離出,應(yīng)用基本不等式轉(zhuǎn)化為關(guān)于c的二次函數(shù),進(jìn)而求出最小值.【詳解】解:若取最小值,則異號(hào),,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【點(diǎn)睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.15、.【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.16、210【解析】
轉(zhuǎn)化,只有中含有,即得解.【詳解】只有中含有,其中的系數(shù)為故答案為:210【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)【解析】
(1)取的中點(diǎn),連接,易得,進(jìn)而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點(diǎn),中點(diǎn),連接,易證平面,平面,從而可知兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系,進(jìn)而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點(diǎn),連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點(diǎn),中點(diǎn),連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點(diǎn)為坐標(biāo)原點(diǎn),向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.由,可得,在等腰梯形中,,易知,.則,,設(shè)平面的法向量為,則,取,得.設(shè)平面的法向量為,則,取,得.因?yàn)?,,,所以,所以平面與平面所成的二面角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的求法,利用空間向量法是解決本題的較好方法,屬于中檔題.18、(1)見(jiàn)解析;(2).【解析】
(1)對(duì)求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時(shí),轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個(gè)不同的零點(diǎn),,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因?yàn)?,,所以,存在使得,即.所以,?dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當(dāng),即時(shí),為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當(dāng),即時(shí),有兩個(gè)不同的零點(diǎn),,且,即,若時(shí),為減函數(shù),(*)若時(shí),為增函數(shù),所以的最小值為.注意到時(shí),,且此時(shí),(?。┊?dāng)時(shí),,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當(dāng)時(shí),,所以,所以由(*)知時(shí),為減函數(shù),所以,不滿足時(shí),恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了利用導(dǎo)數(shù)研究函數(shù)的最值和不等式的恒成立問(wèn)題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運(yùn)算能力,屬于較難題.19、(1)或(2)證明見(jiàn)解析【解析】
(1)將寫(xiě)成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【詳解】(1)當(dāng)時(shí),恒成立,解得;當(dāng)時(shí),由,解得;當(dāng)時(shí),由解得所以的解集為或(2)由(1)可求得最小值為,即因?yàn)榫鶠檎龑?shí)數(shù),且(當(dāng)且僅當(dāng)時(shí),取“”)所以,即.【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的求法,考查利用基本不等式證明不等式,屬于中檔題.20、(1).(2)【解析】
(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.由半個(gè)弦長(zhǎng),圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進(jìn)而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達(dá)定理,進(jìn)而求出中點(diǎn)G的坐標(biāo),再求出直線OG的斜率的表達(dá)式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因?yàn)閨MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以拋物線的方程為:y2=4x;(2)聯(lián)立拋物線與
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版軟件系統(tǒng)合同
- 2025年度合伙企業(yè)持股合同糾紛調(diào)解與仲裁規(guī)則3篇
- 2024物流金融服務(wù)框架協(xié)議
- 2025年度寵物活體產(chǎn)業(yè)鏈上下游資源整合合同3篇
- 2025年中國(guó)豪華客車(chē)行業(yè)市場(chǎng)調(diào)查研究及投資前景預(yù)測(cè)報(bào)告
- 2025個(gè)人虛擬貨幣購(gòu)買(mǎi)分期還款協(xié)議3篇
- 2025年度個(gè)人汽車(chē)消費(fèi)貸款標(biāo)準(zhǔn)合同范本4篇
- 2025年度個(gè)人公司代持股解除協(xié)議書(shū)4篇
- 2025年湖北工業(yè)建筑集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年安徽港口集團(tuán)五河有限公司招聘筆試參考題庫(kù)含答案解析
- 《色彩基礎(chǔ)》課程標(biāo)準(zhǔn)
- 人力資源 -人效評(píng)估指導(dǎo)手冊(cè)
- 大疆80分鐘在線測(cè)評(píng)題
- 2024屆廣東省廣州市高三上學(xué)期調(diào)研測(cè)試英語(yǔ)試題及答案
- 中煤平朔集團(tuán)有限公司招聘筆試題庫(kù)2024
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 不付租金解除合同通知書(shū)
- 區(qū)域合作伙伴合作協(xié)議書(shū)范本
- 中學(xué)數(shù)學(xué)教學(xué)設(shè)計(jì)全套教學(xué)課件
- 環(huán)衛(wèi)公司年終工作總結(jié)
- 2023年德宏隴川縣人民法院招聘聘用制書(shū)記員考試真題及答案
評(píng)論
0/150
提交評(píng)論