版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省宣城市七校2024屆高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在三棱錐中,,二面角的大小為,則三棱錐的外接球的表面積為()A. B. C. D.2.在等比數(shù)列{an}中,a2=8,a5=64,,則公比q為()A.2 B.3 C.4 D.83.某校高二理(1)班學(xué)習(xí)興趣小組為了調(diào)查學(xué)生喜歡數(shù)學(xué)課的人數(shù)比例,設(shè)計(jì)了如下調(diào)查方法:(1)在本校中隨機(jī)抽取100名學(xué)生,并編號(hào)1,2,3,…,100;(2)在箱內(nèi)放置了兩個(gè)黃球和三個(gè)紅球,讓抽取到的100名學(xué)生分別從箱中隨機(jī)摸出一球,記住其顏色并放回;(3)請(qǐng)下列兩類學(xué)生站出來(lái),一是摸到黃球且編號(hào)數(shù)為奇數(shù)的學(xué)生,二是摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生。若共有32名學(xué)生站出來(lái),那么請(qǐng)用統(tǒng)計(jì)的知識(shí)估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例大約是()A.80% B.85% C.90% D.92%4.在中,已知三個(gè)內(nèi)角為,,滿足,則().A. B.C. D.5.用數(shù)學(xué)歸納法證明的過(guò)程中,設(shè),從遞推到時(shí),不等式左邊為()A. B.C. D.6.在中,若為等邊三角形(兩點(diǎn)在兩側(cè)),則當(dāng)四邊形的面積最大時(shí),()A. B. C. D.7.下列函數(shù)中,在區(qū)間上為增函數(shù)的是A. B.C. D.8.下列說(shuō)法正確的是()A.函數(shù)的最小值為 B.函數(shù)的最小值為C.函數(shù)的最小值為 D.函數(shù)的最小值為9.2019年是新中國(guó)成立70周年,渦陽(yáng)縣某中學(xué)為慶祝新中國(guó)成立70周年,舉辦了“我和我的祖國(guó)”演講比賽,某選手的6個(gè)得分去掉一個(gè)最高分,去掉一個(gè)最低分,4個(gè)剩余分?jǐn)?shù)的平均分為91.現(xiàn)場(chǎng)制作的6個(gè)分?jǐn)?shù)的莖葉圖后來(lái)有1個(gè)數(shù)據(jù)模糊,無(wú)法辨認(rèn),在圖中以表示,則4個(gè)剩余分?jǐn)?shù)的方差為()A.1 B. C.4 D.610.若實(shí)數(shù)滿足約束條件則的最大值與最小值之和為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.計(jì)算:______.12.方程在區(qū)間上的解為_(kāi)__________.13.已知3a=2,則32a=____,log318﹣a=_____14.在中,角的對(duì)邊分別為,且面積為,則面積的最大值為_(kāi)____.15.函數(shù)在區(qū)間上的值域?yàn)開(kāi)_____.16.命題“,”是________命題(選填“真”或“假”).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知直線l的方程為.(1)求過(guò)點(diǎn)且與直線l垂直的直線方程;(2)求直線與的交點(diǎn),且求這個(gè)點(diǎn)到直線l的距離.18.已知數(shù)列滿足:,,.(1)求證:數(shù)列為等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)記(),用數(shù)學(xué)歸納法證明:,19.在中,角,,所對(duì)的邊分別為,,,且,.(1)求證:是銳角三角形;(2)若,求的面積.20.如圖,在平面直角坐標(biāo)系xoy中,銳角和鈍角的終邊分別與單位圓交于A,B兩點(diǎn).(1)若點(diǎn)A的縱坐標(biāo)是點(diǎn)B的縱坐標(biāo)是,求的值;(2)若,求的值.21.正項(xiàng)數(shù)列的前n項(xiàng)和Sn滿足:(1)求數(shù)列的通項(xiàng)公式;(2)令,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】
取AB中點(diǎn)F,SC中點(diǎn)E,設(shè)的外心為,外接圓半徑為三棱錐的外接球球心為,由,在四邊形中,設(shè),外接球半徑為,則則可求,表面積可求【題目詳解】取AB中點(diǎn)F,SC中點(diǎn)E,連接SF,CF,因?yàn)閯t為二面角的平面角,即又設(shè)的外心為,外接圓半徑為三棱錐的外接球球心為則面,由在四邊形中,設(shè),外接球半徑為,則則三棱錐的外接球的表面積為故選D【題目點(diǎn)撥】本題考查二面角,三棱錐的外接球,考查空間想象能力,考查正弦定理及運(yùn)算求解能力,是中檔題2、A【解題分析】,選A.3、A【解題分析】
先分別計(jì)算號(hào)數(shù)為奇數(shù)的概率、摸到黃球的概率、摸到紅球的概率,從而可得摸到黃球且號(hào)數(shù)為奇數(shù)的學(xué)生,進(jìn)而可得摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生人數(shù),由此可得估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例.【題目詳解】解:由題意,號(hào)數(shù)為奇數(shù)的概率為0.5,摸到黃球的概率為,摸到紅球的概率為那么按概率計(jì)算摸到黃球且號(hào)數(shù)為奇數(shù)的學(xué)生有個(gè)共有32名學(xué)生站出來(lái),則有12個(gè)摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生,不喜歡數(shù)學(xué)課的學(xué)生有:,喜歡數(shù)學(xué)課的有80個(gè),估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例大約是:.故選:.【題目點(diǎn)撥】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.4、C【解題分析】
利用正弦定理、余弦定理即可得出.【題目詳解】由正弦定理,以及,得,不妨取,則,又,.故選:C.【題目點(diǎn)撥】本題主要考查了正弦定理,余弦定理在解三角形中應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.5、C【解題分析】
比較與時(shí)不等式左邊的項(xiàng),即可得到結(jié)果【題目詳解】因此不等式左邊為,選C.【題目點(diǎn)撥】本題考查數(shù)學(xué)歸納法,考查基本分析判斷能力,屬基礎(chǔ)題6、A【解題分析】
求出三角形的面積,求出四邊形的面積,運(yùn)用三角函數(shù)的恒等變換和正弦函數(shù)的值域,求出滿足條件的角的值即可.【題目詳解】設(shè),,,是正三角形,,由余弦定理得:,,時(shí),四邊形的面積最大,此時(shí).故選A.【題目點(diǎn)撥】本題考查余弦定理和三角形的面積公式,考查兩角的和差公式和正弦函數(shù)的值域,考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.7、A【解題分析】試題分析:對(duì)A,函數(shù)在上為增函數(shù),符合要求;對(duì)B,在上為減函數(shù),不符合題意;對(duì)C,為上的減函數(shù),不符合題意;對(duì)D,在上為減函數(shù),不符合題意.故選A.考點(diǎn):函數(shù)的單調(diào)性,容易題.8、C【解題分析】
A.時(shí)無(wú)最小值;
B.令,由,可得,即,令,利用單調(diào)性研究其最值;
C.令,令,利用單調(diào)性研究其最值;
D.當(dāng)時(shí),,無(wú)最小值.【題目詳解】解:A.時(shí)無(wú)最小值,故A錯(cuò)誤;
B.令,由,可得,即,令,則其在上單調(diào)遞減,故,故B錯(cuò)誤;C.令,令,則其在上單調(diào)遞減,上單調(diào)遞增,故,故C正確;
D.當(dāng)時(shí),,無(wú)最小值,故D不正確.
故選:C.【題目點(diǎn)撥】本題考查了基本不等式的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.9、B【解題分析】
由題意得x≥3,由此能求出4個(gè)剩余數(shù)據(jù)的方差.【題目詳解】由題意得x≥3,則4個(gè)剩余分?jǐn)?shù)的方差為:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故選B.【題目點(diǎn)撥】本題考查了方差的計(jì)算問(wèn)題,也考查了莖葉圖的性質(zhì)、平均數(shù)、方差等基礎(chǔ)知識(shí),是基礎(chǔ)題.10、A【解題分析】
首先根據(jù)不等式組畫出對(duì)應(yīng)的可行域,再分別計(jì)算出頂點(diǎn)的坐標(biāo),帶入目標(biāo)函數(shù)求出相應(yīng)的值,即可找到最大值和最小值.【題目詳解】不等式組對(duì)應(yīng)的可行域如圖所示:,.,.,,.,,.故選:A【題目點(diǎn)撥】本題主要考查線性規(guī)劃,根據(jù)不等式組畫出可行域?yàn)榻忸}的關(guān)鍵,屬于簡(jiǎn)單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
在分式的分子和分母中同時(shí)除以,然后利用常見(jiàn)的數(shù)列極限可計(jì)算出所求極限值.【題目詳解】.故答案為:.【題目點(diǎn)撥】本題考查數(shù)列極限的計(jì)算,熟悉一些常見(jiàn)數(shù)列極限是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.12、【解題分析】試題分析:化簡(jiǎn)得:,所以,解得或(舍去),又,所以.【考點(diǎn)】二倍角公式及三角函數(shù)求值【名師點(diǎn)睛】已知三角函數(shù)值求角,基本思路是通過(guò)化簡(jiǎn),得到角的某種三角函數(shù)值,結(jié)合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計(jì)算能力等.13、42.【解題分析】
由已知結(jié)合指數(shù)式的運(yùn)算性質(zhì)求解,把化為對(duì)數(shù)式得到,代入,再由對(duì)數(shù)的運(yùn)算性質(zhì)求解.【題目詳解】∵,∴,由,得,∴.故答案為:,.【題目點(diǎn)撥】本題考查指數(shù)式與對(duì)數(shù)式的互化,考查對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.14、【解題分析】
利用三角形面積構(gòu)造方程可求得,可知,從而得到;根據(jù)余弦定理,結(jié)合基本不等式可求得,代入三角形面積公式可求得最大值.【題目詳解】,由余弦定理得:(當(dāng)且僅當(dāng)時(shí)取等號(hào))本題正確結(jié)果:【題目點(diǎn)撥】本題考查解三角形問(wèn)題中的三角形面積的最值問(wèn)題的求解;求解最值問(wèn)題的關(guān)鍵是能夠通過(guò)余弦定理構(gòu)造等量關(guān)系,進(jìn)而利用基本不等式求得邊長(zhǎng)之積的最值,屬于??碱}型.15、【解題分析】
由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【題目詳解】,,則,.故答案為:.【題目點(diǎn)撥】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.16、真【解題分析】當(dāng)時(shí),成立,即命題“,”為真命題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)1【解題分析】
(1)與l垂直的直線方程可設(shè)為,再將點(diǎn)代入方程可得;(2)先求兩直線的交點(diǎn),再用點(diǎn)到直線的距離公式可得點(diǎn)到直線l的距離.【題目詳解】解:(1)設(shè)與直線垂直的直線方程為,把代入,得,解得,∴所求直線方程為.(2)解方程組得∴直線與的交點(diǎn)為,點(diǎn)到直線的距離.【題目點(diǎn)撥】本題考查兩直線垂直時(shí)方程的求法和點(diǎn)到直線的距離公式.18、(1)證明見(jiàn)解析,;(2)見(jiàn)解析【解題分析】
(1)定義法證明:;(2)采用數(shù)學(xué)歸納法直接證明(注意步驟).【題目詳解】由可知:,則有,即,所以為等差數(shù)列,且首相為,公差,所以,故;(2),當(dāng)時(shí),成立;假設(shè)當(dāng)時(shí),不等式成立則:;當(dāng)時(shí),,因?yàn)?,所以,則,故時(shí)不等式成立,綜上可知:.【題目點(diǎn)撥】數(shù)學(xué)歸納法的一般步驟:(1)命題成立;(2)假設(shè)命題成立;(3)證明命題成立(一定要借助假設(shè),否則不能稱之為數(shù)學(xué)歸納法).19、(1)證明見(jiàn)解析(2)【解題分析】
(1)由正弦定理、余弦定理得,則角C最大,由余弦定理可得答案.
(2)由平面向量數(shù)量積的運(yùn)算及三角形的面積公式結(jié)合(1)可得,利用面積公式可求解.【題目詳解】【題目詳解】
(1)由,根據(jù)正弦定理得,又,所以即,所以,因此邊最大,即角最大.設(shè)則即,所以是銳角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面積為.【題目點(diǎn)撥】本題考查正弦定理和余弦定理,數(shù)量積的定義的應(yīng)用和求三角形面積.20、(1);(2)【解題分析】
(1)根據(jù)三角函數(shù)的定義,求出對(duì)應(yīng)的正弦和余弦值,用正弦的和角公式即可求解;(2)根據(jù)題意,先計(jì)算出的值,再求解.【題目詳解】(1)由三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)管理服務(wù)咨詢服務(wù)簡(jiǎn)單合同
- 沖孔灌注樁施工勞務(wù)分包合同
- 三方合同補(bǔ)充協(xié)議書
- 資產(chǎn)買賣合同
- 給水、污水泵設(shè)備安裝合同
- 地毯購(gòu)銷合同范本地毯購(gòu)銷合同
- 在線教育系統(tǒng)共建共享合同
- 產(chǎn)品銷售合同范本集錦
- 醫(yī)療器械銷售合同簡(jiǎn)易模板
- 社區(qū)團(tuán)購(gòu)平臺(tái)搭建及運(yùn)營(yíng)合同
- 2024年濰坊工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)完美版
- GB/T 44823-2024綠色礦山評(píng)價(jià)通則
- 人教版英語(yǔ)高考試卷與參考答案(2024年)
- 紅樓夢(mèng)服飾文化
- 浙江省中小學(xué)心理健康教育課程標(biāo)準(zhǔn)
- 《共情的力量》課件
- 2022年中國(guó)電信維護(hù)崗位認(rèn)證動(dòng)力專業(yè)考試題庫(kù)大全-上(單選、多選題)
- 水平二(四年級(jí)第一學(xué)期)體育《小足球(18課時(shí))》大單元教學(xué)計(jì)劃
- 《關(guān)于時(shí)間管理》課件
- 醫(yī)藥高等數(shù)學(xué)智慧樹(shù)知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項(xiàng)目 投標(biāo)方案(技術(shù)標(biāo))
評(píng)論
0/150
提交評(píng)論