![天津市河北區(qū)2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M02/17/23/wKhkGWWmqdWAWk9mAAHiVcjy4OI546.jpg)
![天津市河北區(qū)2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M02/17/23/wKhkGWWmqdWAWk9mAAHiVcjy4OI5462.jpg)
![天津市河北區(qū)2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M02/17/23/wKhkGWWmqdWAWk9mAAHiVcjy4OI5463.jpg)
![天津市河北區(qū)2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M02/17/23/wKhkGWWmqdWAWk9mAAHiVcjy4OI5464.jpg)
![天津市河北區(qū)2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M02/17/23/wKhkGWWmqdWAWk9mAAHiVcjy4OI5465.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市河北區(qū)2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若且,則()A. B. C. D.2.某中學舉行英語演講比賽,如圖是七位評委為某位學生打出分數(shù)的莖葉圖,去掉一個最高分和一個最低分,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)分別為()A.84,85 B.85,84 C.84,85.2 D.86,853.在中,角,,的對邊分別為,,,若,,則()A. B. C. D.4.從2名男同學和3名女同學中任選2人參加社區(qū)服務,則選中的2人都是女同學的概率為A. B. C. D.5.已知一扇形的周長為,圓心角為,則該扇形的面積為()A. B. C. D.6.等比數(shù)列{an}中,a3=12A.3×10-5C.128 D.3×2-57.如圖,正方形的邊長為a,以A,C為圓心,正方形邊長為半徑分別作圓,在正方形內(nèi)隨機取一點,則此點取自陰影部分的概率是()A.2-π2 B.2-π38.已知,,,,那么()A. B. C. D.9.如圖,已知邊長為的正三角形內(nèi)接于圓,為邊中點,為邊中點,則為()A. B. C. D.10.已知等差數(shù)列中,,則公差()A. B. C.1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.觀察下列式子:你可歸納出的不等式是___________12.在明朝程大位《算術(shù)統(tǒng)宗》中有這樣的一首歌謠:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈”.這首古詩描述的這個寶塔古稱浮屠,本題說“寶塔一共有七層,每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,問塔頂有幾盞燈?”根據(jù)上述條件,從上往下數(shù)第二層有___________盞燈.13.已知是奇函數(shù),且,則_______.14.求值:_____.15.已知角α的終邊與單位圓交于點.則___________.16.102,238的最大公約數(shù)是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設是等差數(shù)列,且.(Ⅰ)求的通項公式;(Ⅱ)求.18.某體育老師隨機調(diào)查了100名同學,詢問他們最喜歡的球類運動,統(tǒng)計數(shù)據(jù)如表所示.已知最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和.最喜歡的球類運動足球籃球排球乒乓球羽毛球網(wǎng)球人數(shù)a201015b5(1)求的值;(2)將足球、籃球、排球統(tǒng)稱為“大球”,將乒乓球、羽毛球、網(wǎng)球統(tǒng)稱為“小球”.現(xiàn)按照喜歡大、小球的人數(shù)用分層抽樣的方式從調(diào)查的同學中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.19.如圖,四棱錐,平面ABCD,四邊形ABCD是直角梯形,,,,E為PB中點.(1)求證:平面PCD;(2)求證:.20.已知向量,,.(1)求函數(shù)的解析式及在區(qū)間上的值域;(2)求滿足不等式的x的集合.21.已知集合,數(shù)列的首項,且當時,點,數(shù)列滿足.(1)試判斷數(shù)列是否是等差數(shù)列,并說明理由;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
利用同角的三角函數(shù)關(guān)系求得,再根據(jù)正弦的二倍角公式求解即可【題目詳解】由題,因為,,所以或,因為,所以,則,所以,故選:A【題目點撥】本題考查正弦的二倍角公式的應用,考查同角的三角函數(shù)關(guān)系的應用,考查已知三角函數(shù)值求三角函數(shù)值問題2、A【解題分析】
剩余數(shù)據(jù)為:84.84,86,84,87,計算中位數(shù)和平均數(shù).【題目詳解】剩余數(shù)據(jù)為:84.84,86,84,87則中位數(shù)為:84平均數(shù)為:故答案為A【題目點撥】本題考查了中位數(shù)和平均數(shù)的計算,屬于基礎題型.3、A【解題分析】
由正弦定理求得sinA,利用同角三角函數(shù)的基本關(guān)系求得cosA,求出sinB=sin(120°+A)的值,可得
的值.【題目詳解】△ABC中,由正弦定理可得
,∴
,∴sinA=
,cosA=.
sinB=sin(120°+A)=
?+?=
,再由正弦定理可得
=
=
,
故答案為
A.【題目點撥】本題考查正弦定理,兩角和與差的正弦公式的應用,求出sinB是解題的關(guān)鍵,屬基礎題.4、D【解題分析】分析:分別求出事件“2名男同學和3名女同學中任選2人參加社區(qū)服務”的總可能及事件“選中的2人都是女同學”的總可能,代入概率公式可求得概率.詳解:設2名男同學為,3名女同學為,從以上5名同學中任選2人總共有共10種可能,選中的2人都是女同學的情況共有共三種可能則選中的2人都是女同學的概率為,故選D.點睛:應用古典概型求某事件的步驟:第一步,判斷本試驗的結(jié)果是否為等可能事件,設出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個數(shù);第三步,利用公式求出事件的概率.5、C【解題分析】
根據(jù)題意設出扇形的弧長與半徑,通過扇形的周長與弧長公式即可求出扇形的弧長與半徑,進而根據(jù)扇形的面積公式即可求解.【題目詳解】設扇形的弧長為,半徑為,扇形的圓心角的弧度數(shù)是.
則由題意可得:.
可得:,解得:,.可得:故選:C【題目點撥】本題主要考查扇形的周長與扇形的面積公式的應用,以及考查學生的計算能力,屬于基礎題.6、D【解題分析】
根據(jù)等比數(shù)列的通項公式得到公比,進而得到通項.【題目詳解】設公比為q,則12q+12q=30,∴∴q=2或q=12,∴a10即3×29或故選D.【題目點撥】本題考查了等比數(shù)列通項公式的應用,屬于簡單題.7、D【解題分析】
將陰影部分拆分成兩個小弓形,從而可求解出陰影部分面積,根據(jù)幾何概型求得所求概率.【題目詳解】如圖所示:陰影部分可拆分為兩個小弓形則陰影部分面積:S正方形面積:S=∴所求概率P=本題正確選項:D【題目點撥】本題考查利用幾何概型求解概率問題,屬于基礎題.8、C【解題分析】由于故,故,所以.由于,由于,所以,故.綜上所述選.9、B【解題分析】
如圖,是直角三角形,是等邊三角形,,,則與的夾角也是30°,∴,又,∴.故選B.【題目點撥】本題考查平面向量的數(shù)量積,解題時可通過平面幾何知識求得向量的模,向量之間的夾角,這可簡化運算.10、C【解題分析】
利用通項得到關(guān)于公差d的方程,解方程即得解.【題目詳解】由題得.故選C【題目點撥】本題主要考查數(shù)列的通項的基本量的計算,意在考查學生對該知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
觀察三個已知式子的左邊和右邊,第1個不等式左邊可改寫成;第2個不等式左邊的可改寫成,右邊的可改寫成;第3個不等式的左邊可改寫成;據(jù)此可發(fā)現(xiàn)第個不等式的規(guī)律.【題目詳解】觀察三個已知式子的左邊和右邊,第1個式子可改寫為:,第2個式子可改寫為:,第3個式子可改寫為:,所以可歸納出第個不等式是:.故答案為:.【題目點撥】本題考查歸納推理,考查學生分析、解決問題的能力,屬于基礎題.12、6.【解題分析】
根據(jù)題意可將問題轉(zhuǎn)化為等比數(shù)列中,已知和,求解的問題;利用等比數(shù)列前項和公式可求得,利用求得結(jié)果.【題目詳解】由題意可知,每層懸掛的紅燈數(shù)成等比數(shù)列,設為設第層懸掛紅燈數(shù)為,向下依次為且即從上往下數(shù)第二層有盞燈本題正確結(jié)果;【題目點撥】本題考查利用等比數(shù)列前項和求解基本量的問題,屬于基礎題.13、【解題分析】
根據(jù)奇偶性定義可知,利用可求得,從而得到;利用可求得結(jié)果.【題目詳解】為奇函數(shù)又即,解得:本題正確結(jié)果:【題目點撥】本題考查根據(jù)函數(shù)的奇偶性求解函數(shù)值的問題,屬于基礎題.14、【解題分析】
根據(jù)同角三角函數(shù)的基本關(guān)系:,以及反三角函數(shù)即可解決。【題目詳解】由題意.故答案為:.【題目點撥】本題主要考查了同角三角函數(shù)的基本關(guān)系,同角角三角函數(shù)基本關(guān)系主要有:,.屬于基礎題。15、【解題分析】
直接利用三角函數(shù)的坐標定義求解.【題目詳解】由題得.故答案為【題目點撥】本題主要考查三角函數(shù)的坐標定義,意在考查學生對該知識的理解掌握水平,屬于基礎題.16、34【解題分析】試題分析:根據(jù)輾轉(zhuǎn)相除法的含義,可得238=2×102+34,102=3×34,所以得兩個數(shù)102、238的最大公約數(shù)是34.故答案為34.考點:輾轉(zhuǎn)相除法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(I);(II).【解題分析】
(I)設公差為,根據(jù)題意可列關(guān)于的方程組,求解,代入通項公式可得;(II)由(I)可得,進而可利用等比數(shù)列求和公式進行求解.【題目詳解】(I)設等差數(shù)列的公差為,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2為首項,2為公比的等比數(shù)列.∴.∴點睛:等差數(shù)列的通項公式及前項和共涉及五個基本量,知道其中三個可求另外兩個,體現(xiàn)了用方程組解決問題的思想.18、(1);(2)【解題分析】
(1)根據(jù)最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,以及總?cè)藬?shù)列方程組求解;(2)利用分層抽樣,抽取的5人中,3人喜歡大球,2人喜歡小球,根據(jù)古典概型求解概率.【題目詳解】(1)由題最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和,所以,解得:,所以;(2)由題可得:喜歡大球的60人,喜歡小球的40人,按照分層抽樣抽取5人,其中喜歡大球的3人記為,喜歡小球的2人記為,從中任取2人,情況為:共10種,這兩人中,至少一人喜歡小球的情況:共7種,所以所求概率為;【題目點撥】此題考查統(tǒng)計與概率相關(guān)知識,涉及分層抽樣和求古典概型,關(guān)鍵在于弄清基本事件總數(shù)和某一事件包含的基本事件個數(shù).19、(1)證明見詳解;(2)證明見詳解【解題分析】
(1)取的中點,證出,再利用線面平行的判定定理即可證出.(2)利用線面垂直的判定定理可證出平面,再根據(jù)線面垂直的定義即可證出.【題目詳解】如圖,取的中點,連接,E為PB中點,,且,又,,,,為平行四邊形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因為,,所以,,平面,又平面,.【題目點撥】本題考查了線面平行的判定定理、線面垂直的判定定理,要證線面平行,需先證線線平行;要證異面直線垂直,可先證線面垂直,此題屬于基礎題.20、(1)值域為.(2)【解題分析】
(1)由向量,,利用數(shù)量積運算得到;由,得到,利用整體思想轉(zhuǎn)化為正弦函數(shù)求值域.(2)不等式,轉(zhuǎn)化為,利用整體思想,轉(zhuǎn)化為三角不等式,利用單位圓或正弦函數(shù)的圖象求解.【題目詳解】(1)因為,,所以.因為,所以,所以,所以,所以在區(qū)間上的值域為.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- SMARCA2-ligand-12-3-methylazetidine-生命科學試劑-MCE-3446
- N-Methylcanadium-iodide-生命科學試劑-MCE-3917
- 3-Fluoro-4-hydroxymethyl-benzonitrile-d2-4-Cyano-2-fluorobenzyl-alcohol-d-sub-2-sub-生命科學試劑-MCE-3394
- 二零二五年度影視作品分紅協(xié)議書
- 二零二五年度紅磚新材料研發(fā)與應用合作協(xié)議書
- 2025年度電影項目演員聘用合同模板
- 二零二五年度企業(yè)薪資補充協(xié)議及員工住房補貼
- 2025年度綠色生態(tài)園區(qū)物業(yè)公司股權(quán)轉(zhuǎn)讓合作協(xié)議
- 二零二五年度私人老板與藝術(shù)策展人合作協(xié)議
- 二零二五年度科研機構(gòu)競業(yè)禁止協(xié)議期限與成果轉(zhuǎn)化
- 最經(jīng)典凈水廠施工組織設計
- VDA6.3過程審核報告
- 《心臟血管的解剖》課件
- 2024-2030年中國并購基金行業(yè)發(fā)展前景預測及投資策略研究報告
- 河道清淤安全培訓課件
- 2024年湖南商務職業(yè)技術(shù)學院單招職業(yè)適應性測試題庫帶答案
- 骨科手術(shù)中常被忽略的操作課件
- 《湖南師范大學》課件
- 2024年全國各地中考試題分類匯編:作文題目
- 2024年高壓電工操作證考試復習題庫及答案(共三套)
- 《糖拌西紅柿 》 教案()
評論
0/150
提交評論