湖北省鄂東南聯(lián)盟2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
湖北省鄂東南聯(lián)盟2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
湖北省鄂東南聯(lián)盟2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
湖北省鄂東南聯(lián)盟2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
湖北省鄂東南聯(lián)盟2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省鄂東南聯(lián)盟2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若扇形的面積為、半徑為1,則扇形的圓心角為()A. B. C. D.2.在中,角的對邊分別為,若,則的最小值是()A.5 B.8 C.7 D.63.已知,為直線,,為平面,下列命題正確的是()A.若,,則B.若,,則與為異面直線C.若,,,則D.若,,,則4.《張丘建算經(jīng)》中如下問題:“今有馬行轉(zhuǎn)遲,次日減半,疾五日,行四百六十五里,問日行幾何?”根據(jù)此問題寫出如下程序框圖,若輸出,則輸入m的值為()A.240 B.220 C.280 D.2605.中,已知,則角()A.90° B.105° C.120° D.135°6.設(shè)是△所在平面內(nèi)的一點,且,則△與△的面積之比是()A. B. C. D.7.在中,,,則的最大值為A. B. C. D.8.在中,內(nèi)角所對的邊分別為,若,且,則的形狀是()A.銳角三角形 B.鈍角三角形 C.等腰直角三角形 D.不確定9.若存在正實數(shù),使得,則()A.實數(shù)的最大值為 B.實數(shù)的最小值為C.實數(shù)的最大值為 D.實數(shù)的最小值為10.化成弧度制為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項公式為,是其前項和,則_____.(結(jié)果用數(shù)字作答)12.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內(nèi)角,使得;②存在某鈍角,有;③若,則的最小角小于.13.在平面直角坐標(biāo)系中,已知圓:,圓:,動點在直線:上(),過分別作圓,的切線,切點分別為,,若滿足的點有且只有一個,則實數(shù)的值為______.14.已知向量為單位向量,向量,且,則向量的夾角為__________.15.若在等比數(shù)列中,,則__________.16.已知直線與直線互相平行,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.(1)求的值;(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;18.記Sn為等差數(shù)列an的前n項和,已知(1)求an(2)求Sn,并求S19.現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高是正四棱錐的高的4倍.(1)若則倉庫的容積是多少?(2)若正四棱錐的側(cè)棱長為,則當(dāng)為多少時,倉庫的容積最大?20.已知不經(jīng)過原點的直線在兩坐標(biāo)軸上的截距相等,且點在直線上.(1)求直線的方程;(2)過點作直線,若直線,與軸圍成的三角形的面積為2,求直線的方程.21.已知的三個頂點為.(1)求過點且平行于的直線方程;(2)求過點且與、距離相等的直線方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】設(shè)扇形的圓心角為α,則∵扇形的面積為,半徑為1,

∴故選B2、D【解題分析】

先化簡條件中的等式,利用余弦定理整理得到等式,然后根據(jù)等式利用基本不等式求解最小值.【題目詳解】由,得,化簡整理得,,即,當(dāng)且僅當(dāng),即時,取等號.故選D.【題目點撥】本題考查正、余弦定理在邊角化簡中的應(yīng)用,難度一般.對于利用基本不等求最值的時候,一定要注意取到等號的條件.3、D【解題分析】

利用空間中線線、線面、面面間的位置關(guān)系對選項逐一判斷即可.【題目詳解】由,為直線,,為平面,知:在A中,若,,則與相交、平行或異面,故A錯誤;在B中,若,,則與相交、平行或異面,故B錯誤;在C中,若,,,則與相交、平行或異面,故C錯誤;在D中,若,,,則由線面垂直、面面平行的性質(zhì)定理得,故D正確.故選:D.【題目點撥】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,屬于基礎(chǔ)題.4、A【解題分析】

根據(jù)程序框圖,依次循環(huán)計算,可得輸出的表達(dá)式.結(jié)合,由等比數(shù)列求和公式,即可求得的值.【題目詳解】由程序框圖可知,此時輸出.所以即由等比數(shù)列前n項和公式可得解得故選:A【題目點撥】本題考查了循環(huán)結(jié)構(gòu)程序框圖的應(yīng)用,等比數(shù)列求和的應(yīng)用,屬于中檔題.5、C【解題分析】

由誘導(dǎo)公式和兩角差的正弦公式化簡已知不等式可求得關(guān)系,求出后即可求得.【題目詳解】,∴,是三角形內(nèi)角,,,則由得,∴,從而.故選:C.【題目點撥】本題考查兩角差的正弦公式和誘導(dǎo)公式,考查正弦函數(shù)性質(zhì).已知三角函數(shù)值只要確定了角的范圍就可求角.6、B【解題分析】試題分析:依題意,得,設(shè)點到的距離為,所以與的面積之比是,故選B.考點:三角形的面積.7、A【解題分析】

利用正弦定理得出的外接圓直徑,并利用正弦定理化邊為角,利用三角形內(nèi)角和關(guān)系以及兩角差正弦公式、配角公式化簡,最后利用正弦函數(shù)性質(zhì)可得出答案.【題目詳解】中,,,則,,其中由于,所以,所以最大值為.故選A.【題目點撥】本題考查正弦定理以及兩角差正弦公式、配角公式,考查基本分析計算能力,屬于中等題.8、C【解題分析】

通過正弦定理可得可得三角形為等腰,再由可知三角形是直角,于是得到答案.【題目詳解】因為,所以,所以,即.因為,所以,又因為,所以,所以,故的形狀是等腰直角三角形.【題目點撥】本題主要考查利用正弦定理判斷三角形形狀,意在考查學(xué)生的分析能力,計算能力,難度中等.9、C【解題分析】

將題目所給方程轉(zhuǎn)化為關(guān)于的一元二次方程,根據(jù)此方程在上有解列不等式組,解不等式組求得的取值范圍,進(jìn)而求出正確選項.【題目詳解】由得,當(dāng)時,方程為不和題意,故這是關(guān)于的一元二次方程,依題意可知,該方程在上有解,注意到,所以由解得,故實數(shù)的最大值為,所以選C.【題目點撥】本小題主要考查一元二次方程根的分布問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.10、A【解題分析】

利用角度化弧度公式可將化為對應(yīng)的弧度數(shù).【題目詳解】由題意可得,故選A.【題目點撥】本題考查角度化弧度,充分利用公式進(jìn)行計算,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】

由題意知,數(shù)列的偶數(shù)項成等差數(shù)列,奇數(shù)列成等比數(shù)列,然后利用等差數(shù)列和等比數(shù)列的求和公式可求出的值.【題目詳解】由題意可得,故答案為.【題目點撥】本題考查奇偶分組求和,同時也考查等差數(shù)列求和以及等比數(shù)列求和,解題時要得出公差和公比,同時也要確定出對應(yīng)的項數(shù),考查運算求解能力,屬于中等題.12、①③【解題分析】

①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運算,得到,由于不共線,得到,再由余弦定理,即可判定.【題目詳解】由題意,對于①中,在中,當(dāng),則,若為直角三角形,則必有一個角在內(nèi);若為銳角三角形,則必有一個內(nèi)角小于等于;若為鈍角三角形,也必有一個角小于內(nèi),所以總存在某個內(nèi)角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【題目點撥】本題以真假命題為載體,考查了正弦、余弦定理的應(yīng)用,以及向量的運算及應(yīng)用,其中解答中熟練應(yīng)用解三角形的知識和向量的運算進(jìn)行化簡是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.13、.【解題分析】

根據(jù)圓的切線的性質(zhì)和三角形全等,得到,求得點的軌跡方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求解.【題目詳解】由題意得:,,設(shè),如下圖所示∵PA、PB分別是圓O,O1的切線,∴∠PBO1=∠PAO=90°,又∵PB=2PA,BO1=2AO,∴△PBO1∽△PAO,∴,∴,∴,整理得,∴點P(x,y)的軌跡是以為圓心、半徑等于的圓,∵動點P在直線:上(),滿足PB=2PA的點P有且只有一個,∴該直線l與圓相切,∴圓心到直線l的距離d滿足,即,解得或,又因為,所以.【題目點撥】本題主要考查了圓的切線的性質(zhì),以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中根據(jù)圓的切下的性質(zhì)和三角形全等求得點的軌跡方程,再根據(jù)直線與圓相切,列出方程求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.14、【解題分析】因為,所以,所以,所以,則.15、【解題分析】

根據(jù)等比中項的性質(zhì),將等式化成即可求得答案.【題目詳解】是等比數(shù)列,若,則.因為,所以,.故答案為:1.【題目點撥】本題考查等比中項的性質(zhì),考查基本運算求解能力,屬于容易題.16、【解題分析】

由兩直線平行得,,解出值.【題目詳解】由直線與直線互相平行,得,解得.故答案為:.【題目點撥】本題考查兩直線平行的性質(zhì),兩直線平行,一次項系數(shù)之比相等,但不等于常數(shù)項之比,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),乙組加工水平高.【解題分析】

(1)根據(jù)甲、乙兩組數(shù)據(jù)的平均數(shù)都是并結(jié)合平均數(shù)公式可求出、的值;(2)利用方差公式求出甲、乙兩組數(shù)據(jù)的方差,根據(jù)方差大小來對甲、乙兩組技工的加工水平高低作判斷.【題目詳解】(1)由于甲組數(shù)據(jù)的平均數(shù)為,即,解得,同理,,解得;(2)甲組的個數(shù)據(jù)分別為:、、、、,由方差公式得,乙組的個數(shù)據(jù)分別為:、、、、,由方差公式得,,因此,乙組技工的技工的加工水平高.【題目點撥】本題考查莖葉圖與平均數(shù)、方差的計算,從莖葉圖中讀取數(shù)據(jù)時,要注意莖的部分?jǐn)?shù)字為高位,葉子部分的數(shù)字為低位,另外,這些數(shù)據(jù)一般要按照由小到大或者由大到小的順序排列.18、(1)an=2n-12;(2)Sn【解題分析】

(1)設(shè)等差數(shù)列an的公差為d,根據(jù)題意求出d(2)根據(jù)等差數(shù)列的前n項和公式先求出Sn,再由an=2n-12≥0【題目詳解】(1)因為數(shù)列an為等差數(shù)列,設(shè)公差為d由a3=-6,a6=0所以an(2)因為Sn為等差數(shù)列an的前所以Sn由an=2n-12≥0得所以當(dāng)n=5或n=6時,【題目點撥】本題主要考查等差數(shù)列,熟記通項公式以及前n項和公式即可,屬于常考題型.19、(1)312(2)【解題分析】試題分析:(1)明確柱體與錐體積公式的區(qū)別,分別代入對應(yīng)公式求解;(2)先根據(jù)體積關(guān)系建立函數(shù)解析式,,然后利用導(dǎo)數(shù)求其最值.試題解析:解:(1)由PO1=2知OO1=4PO1=8.因為A1B1=AB=6,所以正四棱錐P-A1B1C1D1的體積正四棱柱ABCD-A1B1C1D1的體積所以倉庫的容積V=V錐+V柱=24+288=312(m3).(2)設(shè)A1B1=a(m),PO1=h(m),則0<h<6,OO1=4h.連結(jié)O1B1.因為在中,所以,即于是倉庫的容積,從而.令,得或(舍).當(dāng)時,,V是單調(diào)增函數(shù);當(dāng)時,,V是單調(diào)減函數(shù).故時,V取得極大值,也是最大值.因此,當(dāng)m時,倉庫的容積最大.【考點】函數(shù)的概念、導(dǎo)數(shù)的應(yīng)用、棱柱和棱錐的體積【名師點睛】對應(yīng)用題的訓(xùn)練,一般從讀題、審題、剖析題目、尋找切入點等方面進(jìn)行強(qiáng)化,注重培養(yǎng)將文字語言轉(zhuǎn)化為數(shù)學(xué)語言的能力,強(qiáng)化構(gòu)建數(shù)學(xué)模型的幾種方法.而江蘇高考的應(yīng)用題往往需結(jié)合導(dǎo)數(shù)知識解決相應(yīng)的最值問題,因此掌握利用導(dǎo)數(shù)求最值方法是一項基本要求,需熟練掌握.20、(1);(2)或.【解題分析】

(1)根據(jù)直線在兩坐標(biāo)軸上的截距相等列出直線方程,然后代入點即可求出直線方程;(2)首先根據(jù)直線過點設(shè)出直線方程,然后列出三角形的面積公式,根據(jù)面積等于2求出直線的方程.【題目詳解】(1)因為直線在兩坐標(biāo)軸上的截距相等,設(shè)直線:,將點代入方程,得,所以直線的方程為;(2)①若直線的斜率不存在,則直線的方程為,直線,直線和軸圍成的三角形的面積為2,則直線的方程為符合題意,②若直線的斜率,則直線與軸沒有交點,不符合題意,③若直線的斜率,設(shè)其方程為,令,得,由(1)得直線交軸,依題意有,即,解得,所以直線的方程為,即,綜上,直線的方程為或.【題目點撥】本題考查了直線方程的求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論