版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市濱海新區(qū)2023年高一上數(shù)學期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的零點所在區(qū)間是()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)2.函數(shù)的圖像必經過點A.(0,2) B.(4,3)C.(4,2) D.(2,3)3.已知向量(2,3),(x,2),且⊥,則|23|=()A.2 B.C.12 D.134.某地區(qū)經過一年的新農村建設,農村的經濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農村的經濟收入變化情況,統(tǒng)計了該地區(qū)新農村建設前后農村的經濟收入構成比例.得到如下餅圖:則下面結論中不正確的是A.新農村建設后,種植收入減少B.新農村建設后,其他收入增加了一倍以上C.新農村建設后,養(yǎng)殖收入增加了一倍D.新農村建設后,養(yǎng)殖收入與第三產業(yè)收入的總和超過了經濟收入的一半5.已知向量,,且,若,均為正數(shù),則的最大值是A. B.C. D.6.已知函數(shù),若,則實數(shù)a的值為()A.1 B.-1C.2 D.-27.用斜二測畫法畫一個水平放置的平面圖形的直觀圖是如圖所示的一個正方形,則原來的圖形是()A. B.C. D.8.已知,則的大小關系是A. B.C. D.9.如果,且,那么下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則10.已知角的終邊上一點,且,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則_____;_____12.化簡_____13.已知實數(shù)滿足,則________14.冪函數(shù)的圖象經過點,則________15.已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關于直線x-y-1=0對稱,則圓C2的方程為______16.已知函數(shù)是R上的減函數(shù),則實數(shù)a的取值范圍為_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù)是定義在R上的奇函數(shù).(Ⅰ)求實數(shù)m的值;(Ⅱ)若,且在上的最小值為2,求實數(shù)k的取值范圍.18.已知集合,.(1)若,求;(2)若,求的取值范圍.19.求經過點和,圓心在軸上的圓的方程.20.已知,函數(shù).(1)當時,證明是奇函數(shù);(2)當時,求函數(shù)的單調區(qū)間;(3)當時,求函數(shù)在上的最小值.21.已知為奇函數(shù),為偶函數(shù),且.(1)求及的解析式及定義域;(2)如果函數(shù),若函數(shù)有兩個零點,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】計算出,并判斷符號,由零點存在性定理可得答案.【詳解】因為,,所以根據零點存在性定理可知函數(shù)的零點所在區(qū)間是,故選:B【點睛】本題考查了利用零點存在性定理判斷函數(shù)的零點所在區(qū)間,解題方法是計算區(qū)間端點的函數(shù)值并判斷符號,如果異號,說明區(qū)間內由零點,屬于基礎題.2、B【解析】根據指數(shù)型函數(shù)的性質,即可確定其定點.【詳解】令得,所以,因此函數(shù)過點(4,3).故選B【點睛】本題主要考查函數(shù)恒過定點的問題,熟記指數(shù)函數(shù)的性質即可,屬于基礎題型.3、D【解析】由,可得,由向量加法可得,再結合向量模的運算即可得解.【詳解】解:由向量(2,3),(x,2),且,則,即,即,所以,所以,故選:D.【點睛】本題考查了向量垂直的坐標運算,重點考查了向量加法及模的運算,屬基礎題.4、A【解析】首先設出新農村建設前的經濟收入為M,根據題意,得到新農村建設后的經濟收入為2M,之后從圖中各項收入所占的比例,得到其對應的收入是多少,從而可以比較其大小,并且得到其相應的關系,從而得出正確的選項.【詳解】設新農村建設前的收入為M,而新農村建設后的收入為2M,則新農村建設前種植收入為0.6M,而新農村建設后的種植收入為0.74M,所以種植收入增加了,所以A項不正確;新農村建設前其他收入我0.04M,新農村建設后其他收入為0.1M,故增加了一倍以上,所以B項正確;新農村建設前,養(yǎng)殖收入為0.3M,新農村建設后為0.6M,所以增加了一倍,所以C項正確;新農村建設后,養(yǎng)殖收入與第三產業(yè)收入的綜合占經濟收入的,所以超過了經濟收入的一半,所以D正確;故選A.點睛:該題考查的是有關新農村建設前后的經濟收入的構成比例的餅形圖,要會從圖中讀出相應的信息即可得結果.5、C【解析】利用向量共線定理可得2x+3y=5,再利用基本不等式即可得出【詳解】∵,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥2,∴xy≤,當且僅當3y=2x時取等號故選C.點睛】本題考查了向量共線定理和基本不等式,屬于中檔題6、B【解析】首先求出的解析式,再根據指數(shù)對數(shù)恒等式得到,即可得到方程,解得即可;【詳解】解:根據題意,,則有,若,即,解可得,故選:B7、A【解析】由斜二測畫法的規(guī)則知與x'軸平行或重合的線段與x’軸平行或重合,其長度不變,與y軸平行或重合的線段與x’軸平行或重合,其長度變成原來的一半,正方形的對角線在y'軸上,可求得其長度為,故在平面圖中其在y軸上,且其長度變?yōu)樵瓉淼?倍,長度為2,觀察四個選項,A選項符合題意.故應選A考點:斜二測畫法點評:注意斜二測畫法中線段長度的變化8、B【解析】根據指數(shù)函數(shù)的單調性以及對數(shù)函數(shù)的單調性分別判斷出的取值范圍,從而可得結果.【詳解】,,,,故選B.【點睛】本題主要考查對數(shù)函數(shù)的性質、指數(shù)函數(shù)的單調性及比較大小問題,屬于難題.解答比較大小問題,常見思路有兩個:一是判斷出各個數(shù)值所在區(qū)間(一般是看三個區(qū)間);二是利用函數(shù)的單調性直接解答;數(shù)值比較多的比大小問題也可以兩種方法綜合應用.9、D【解析】根據不等式的性質逐項分析判斷即可.【詳解】對于A,若,,滿足,但不成立,錯誤;對于B,若,則,錯誤;對于C,若,,滿足,但不成立,錯誤;對于D,由指數(shù)函數(shù)的單調性知,正確.故選:D.10、B【解析】由三角函數(shù)的定義可列方程解出,需注意的范圍【詳解】由三角函數(shù)定義,解得,由,知,則.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】利用指數(shù)式與對數(shù)的互化以及對數(shù)的運算性質化簡可得結果.【詳解】因為,則,故.故答案為:;212、-2【解析】利用余弦的二倍角公式和正切的商數(shù)關系可得答案.【詳解】.故答案為:.13、4【解析】方程的根與方程的根可以轉化為函數(shù)與函數(shù)交點的橫坐標和函數(shù)與函數(shù)交點的橫坐標,再根據與互為反函數(shù),關于對稱,即可求出答案.【詳解】,,令,,此方程的解即為函數(shù)與函數(shù)交點的橫坐標,設為,如下圖所示;,此方程的解即為函數(shù)與函數(shù)交點的橫坐標,設為,如下圖所示,與互反函數(shù),關于對稱,聯(lián)立方程,解得,即,.故答案為:4.14、【解析】設冪函數(shù)的解析式,然后代入求解析式,計算.【詳解】設,則,解得,所以,得故答案為:15、【解析】在圓C2上任取一點(x,y),則此點關于直線對稱點(y+1,x-1)在圓C1:上,所以有(y+1+1)2+(x-1-1)2=1,即,所以答案為考點:點關于直線的對稱點的求法點評:本題考查一曲線關于一直線對稱的曲線方程的求法:在圓C2上任取一點(x,y),則此點關于直線的對稱點(y+1,x-1)在圓C1上16、【解析】由已知結合分段函數(shù)的性質及一次函數(shù)的性質,列出關于a的不等式,解不等式組即可得解.【詳解】因為函數(shù)是R上的減函數(shù)所以需滿足,解得,即所以實數(shù)a的取值范圍為故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由奇函數(shù)即可解得,需要檢驗;(Ⅱ)由得,進而得,令,得,結合的范圍求解即可.試題解析:(Ⅰ)經檢驗成立.(Ⅱ).,設設..當時,成立.當時,成立.當時,不成立,舍去.綜上所述,實數(shù)的取值范圍是.18、(1);(2).【解析】(1)先由得,再由并集的概念,即可得出結果;(2)根據,分別討論,兩種情況,即可得出結果.【詳解】(1)若,則,又,所以;(2)因為,若,則,即;若,只需,解得,綜上,取值范圍為.【點睛】本題主要考查求集合的并集,考查由集合的包含關系求參數(shù),屬于??碱}型.19、.【解析】根據條件得到,設圓心為,根據點點距列出式子即可,求得參數(shù)值解析:圓的圓心在軸上,設圓心為,由圓過點和,由可得,即,求得,可得圓心為,半徑為,故圓的方程為.點睛:這個題目考查了圓的方程的求法,利用圓的定義得到圓上的點到圓心的距離相等,可列出式子.一般和圓有關的多數(shù)是利用圓的幾何性質,垂徑定理列出方程,利用切線的性質即切點和圓心的連線和切線垂直列式子.注意觀察式子的特點20、(1)見解析(2)增區(qū)間為,,減區(qū)間為(3)當時,;當時,【解析】(1)時,,定義域為,關于原點對稱,而,故是奇函數(shù).(2)時,,不同范圍上的函數(shù)解析式都是二次形式且有相同的對稱軸,因,故函數(shù)的增區(qū)間為,,減區(qū)間為.(3)根據(2)的單調性可知,比較的大小即可得到.解析:(1)若,則,其定義域是一切實數(shù).且有,所以是奇函數(shù).(2)函數(shù),因為,則函數(shù)在區(qū)間遞減,在區(qū)間遞增,函數(shù)在區(qū)間遞增.∴綜上可知,函數(shù)的增區(qū)間為,,減區(qū)間為.(3)由得.又函數(shù)在遞增,在遞減,且,.若,即時,;若,即時,.∴綜上,當時,;當時,.點睛:帶有絕對值符號的函數(shù),往往可以通過討論代數(shù)式的正負去掉絕對值符號,從而把原函數(shù)轉化為分段函數(shù),每一段上的函數(shù)都是熟悉的函數(shù),討論它們的單調性就可以得到原函數(shù)的單調性.21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《直接能源ATP》課件
- 幼兒園工作總結笑容滿園
- 探索學術之路
- 公司人員述職報告匯編9篇
- 幼兒園工作總結傳遞溫暖收獲微笑
- 2023-2024年項目部安全培訓考試題含答案(培優(yōu)B卷)
- 2023年項目管理人員安全培訓考試題附答案(研優(yōu)卷)
- 《電廠職業(yè)病防治》課件
- 激發(fā)學習動力教學策略報告
- 中醫(yī)理療師年度總結
- 體檢營銷話術與技巧培訓
- TSG 07-2019電梯安裝修理維護質量保證手冊程序文件制度文件表單一整套
- 養(yǎng)殖場巡查制度模板
- 建設工程造價案例分析-形成性考核2(占形考總分25%)-國開(SC)-參考資料
- 《期貨市場發(fā)展之》課件
- 酒店旅游業(yè)OTA平臺整合營銷推廣策略
- 淋巴水腫康復治療技術
- 2024年國家公務員考試《申論》真題(副省級)及參考答案
- 零星維修工程 投標方案(技術方案)
- 10KV電力配電工程施工方案
- 茶葉采購合同范本電子版
評論
0/150
提交評論